Patents by Inventor Michael Rehli
Michael Rehli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210371901Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: ApplicationFiled: July 26, 2021Publication date: December 2, 2021Applicant: Sequenom, Inc.Inventor: Michael Rehli
-
Publication number: 20210337252Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: ApplicationFiled: December 15, 2020Publication date: October 28, 2021Applicant: Sequenom, Inc.Inventor: Michael Rehli
-
Publication number: 20200102593Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: ApplicationFiled: October 10, 2019Publication date: April 2, 2020Applicant: Sequenom, Inc.Inventor: Michael Rehli
-
Patent number: 10487351Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: GrantFiled: January 15, 2016Date of Patent: November 26, 2019Assignee: Sequenom, Inc.Inventor: Michael Rehli
-
Publication number: 20180220176Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: ApplicationFiled: January 22, 2018Publication date: August 2, 2018Applicant: Sequenom, Inc.Inventor: Michael Rehli
-
Patent number: 9873919Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: GrantFiled: June 9, 2015Date of Patent: January 23, 2018Assignee: Sequenom, Inc.Inventor: Michael Rehli
-
Publication number: 20160201113Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: ApplicationFiled: January 15, 2016Publication date: July 14, 2016Inventor: Michael Rehli
-
Patent number: 9249464Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: GrantFiled: November 28, 2005Date of Patent: February 2, 2016Assignee: SEQUENOM, INC.Inventor: Michael Rehli
-
Publication number: 20150267263Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: ApplicationFiled: June 9, 2015Publication date: September 24, 2015Inventor: Michael Rehli
-
Patent number: 9074013Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: GrantFiled: November 28, 2005Date of Patent: July 7, 2015Assignee: Sequenom, Inc.Inventor: Michael Rehli
-
Publication number: 20090130659Abstract: The present invention relates to an in vitro method for detecting methylated DNA comprising (a) coating a container with a polypeptide capable of binding methylated DNA; (b) contacting said polypeptide with a sample comprising methylated and/or unmethylated DNA; and (c) detecting the binding of said polypeptide to methylated DNA. In a preferred embodiment, said method further comprises step (d) analyzing the detected methylated DNA by sequencing. Another aspect of the present invention is a kit for detecting methylated DNA according to the methods of the invention comprising (a) a polypeptide capable of binding methylated DNA; (b) a container which can be coated with said polypeptide; (c) means for coating said container; and (d) means for detecting methylated DNA.Type: ApplicationFiled: November 28, 2005Publication date: May 21, 2009Inventor: Michael Rehli
-
Publication number: 20080260743Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.Type: ApplicationFiled: November 28, 2005Publication date: October 23, 2008Applicant: KLINIKUM DER UNIVERSITÄT REGENSBURGInventor: Michael Rehli