Patents by Inventor Michael Reiss

Michael Reiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190340592
    Abstract: Systems and methods that help ensure that assist a user with bill payment on a graphical user interface (GUI) are described. After receiving bill payment information from the user through the GUI, bill payments are aggregated over a given period of time, allowing a user to make a single payment to ensure that all appropriate bills and/or invoices are paid in a timely fashion. Through use of the GUI, a user can avoid the traditional hassle and stress of tracking and paying bills.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 7, 2019
    Inventors: Matthew Parker Dennison, Hisham Ibrahim, Michael Reiss, Maria Doherty, Erin Riedl, Sandeep Bhimavarapu, Hester Seth, Marisa Johnson
  • Patent number: 10325249
    Abstract: Systems and methods that help ensure that assist a user with bill payment on a graphical user interface (GUI) are described. After receiving bill payment information from the user through the GUI, bill payments are aggregated over a given period of time, allowing a user to make a single payment to ensure that all appropriate bills and/or invoices are paid in a timely fashion. Through use of the GUI, a user can avoid the traditional hassle and stress of tracking and paying bills.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 18, 2019
    Assignee: PayPal, Inc.
    Inventors: Matthew Parker Dennison, Hisham Ibrahim, Michael Reiss, Maria Doherty, Erin Riedl, Sandeep Bhimavarapu, Hester Seth, Marisa Johnson
  • Publication number: 20170343310
    Abstract: A method and apparatus of detecting unauthorized use of a firearm owned by a registered user is provided. The method includes using at least one of said at least one processor, movement of the trigger guard lock, transmitting, using at least one of said at least one processor, an alert to a user device informing the user of the detected movement, receiving, using at least one of said at least one processor, a response to the transmitted alert from the user, and unlocking, using at least one of said at least one processor, the trigger guard lock based on the received response.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 30, 2017
    Inventor: Joseph Michael REISS
  • Publication number: 20170053254
    Abstract: Systems and methods that help ensure that assist a user with bill payment on a graphical user interface (GUI) are described. After receiving bill payment information from the user through the GUI, bill payments are aggregated over a given period of time, allowing a user to make a single payment to ensure that all appropriate bills and/or invoices are paid in a timely fashion. Through use of the GUI, a user can avoid the traditional hassle and stress of tracking and paying bills.
    Type: Application
    Filed: August 19, 2016
    Publication date: February 23, 2017
    Inventors: Matthew Parker Dennison, Hisham Ibrahim, Michael Reiss, Maria Doherty, Erin Riedl, Sandeep Bhimavarapu, Hester Seth, Marisa Johnson
  • Patent number: 8052956
    Abstract: Process for the production of a powdered spherical tungstic acid by acidification of an aqueous alkaline tungstate solution with mineral acid at elevated temperature, preferably in a continuous stirred tank or a cascade of at least 2 continuous stirred tanks, and tungstic acid obtainable in this way, which is characterized by a high bulk density and spherical morphology.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: November 8, 2011
    Assignee: H. C. Starck GmbH
    Inventors: Sven Albrecht, Armin Olbrich, Michael Reiss, Frank Schrumpf, Juliane Meese-Marktscheffel, Uwe Kutzler
  • Publication number: 20090074790
    Abstract: Methods are disclosed for determining the optimal biologic dose of a TGF? receptor kinase inhibitor for administration to patients in need of such therapy and for monitoring the effectiveness of therapy with a TGF? receptor kinase inhibitor in patients receiving such therapy. Kits comprising antibodies and reagents useful in such methods are also disclosed.
    Type: Application
    Filed: July 19, 2006
    Publication date: March 19, 2009
    Inventors: Michael Reiss, Judy Kleinstein
  • Publication number: 20090035542
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining lawyers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g. air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 5, 2009
    Inventors: Timothy P. Weihs, Omar Knio, Michael Reiss, David van Heerden, Todd Hufnagel, Howard Feldmesser
  • Patent number: 6991855
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 31, 2006
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Omar Knio, Michael Reiss, David van Heerden
  • Patent number: 6991856
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt or soften the joining material, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 31, 2006
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Michael Reiss, Omar Knio, Albert Joseph Swiston, Jr., David van Heerden, Todd Hufnagel
  • Patent number: 6863992
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: March 8, 2005
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Omar Knio, Michael Reiss, David van Heerden
  • Publication number: 20050003228
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: January 6, 2005
    Inventors: Timothy Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David Heerden, Howard Feldmesser
  • Publication number: 20040247931
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: December 9, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20040247930
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: December 9, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20040151939
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20040149813
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20040149373
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20040149372
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Patent number: 6736942
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: May 18, 2004
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Todd Hufnagel, Omar Knio, Michael Reiss, David van Heerden, Howard Feldmesser
  • Publication number: 20030164289
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt or soften the joining material, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Application
    Filed: September 20, 2002
    Publication date: September 4, 2003
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Timothy P. Weihs, Michael Reiss, Omar Knio, Albert Joseph Swiston, David van Heerden, Howard Feldmesser, Todd Hufnagel
  • Patent number: 6534194
    Abstract: In accordance with the invention a reactive multilayer foil is fabricated by providing an assembly (stack or multilayer) of reactive layers, inserting the assembly into a jacket, deforming the jacketed assembly to reduce its cross sectional area, flattening the jacketed assembly into a sheet, and then removing the jacket. Advantageously, the assembly is wound into a cylinder before insertion into the jacket, and the jacketed assembly is cooled to a temperature below 100° C. during deforming. The resulting multilayer foil is advantageous as a freestanding reactive foil for use in bonding, ignition or propulsion.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: March 18, 2003
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Michael Reiss