Patents by Inventor Michael Repasky
Michael Repasky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250058272Abstract: A perforated packing for capturing carbon dioxide (CO2) from a dilute gas mixture includes at least one perforated mg) structure and a feed structure. The at least one perforated structure includes a body that includes at least one wall defining an inner volume of the body and an outer surface exposed to the dilute gas mixture; and a plurality of perforations extending through the at least one wall between the inner volume and the outer surface. The feed structure is fluidly coupled to the body and operable to flow a CO2 capture solution into the inner volume of the body, through the plurality of perforations, and along the outer surface to form a liquid film of the CO2 capture solution along at least part of the outer surface, the liquid film of the CO2 capture solution configured to absorb CO2 from the dilute gas mixture.Type: ApplicationFiled: December 7, 2022Publication date: February 20, 2025Inventors: John Michael Repasky, Douglas Edward Olmstead, Megan Lynn O’Brien, Teresa Juliet Pena Bastidas, Todd Ernest Wilke
-
Patent number: 11585597Abstract: Systems and methods are provided for increasing the efficiency of liquefied natural gas production and heavy hydrocarbon distillation. Air within an LNG production facility can be utilized as a heat source to provide heat to HHC liquid for distillation in a HHC distillation system. The mechanism of heat transfer from the air can be natural convection. Heat provided by natural gas, or compressed natural gas, can be also used for HHC distillation. Various other liquids can further be used to transfer heat to HHC liquid for distillation.Type: GrantFiled: January 17, 2020Date of Patent: February 21, 2023Assignee: Baker Hughes, A GE Company, LLCInventor: John Michael Repasky
-
Patent number: 11052365Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.Type: GrantFiled: January 9, 2019Date of Patent: July 6, 2021Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
-
Publication number: 20200224967Abstract: Systems and methods are provided for increasing the efficiency of liquefied natural gas production and heavy hydrocarbon distillation. In one embodiment, air within an LNG production facility can be utilized as a heat source to provide heat to HHC liquid for distillation in a HHC distillation system. The mechanism of heat transfer from the air can be natural convection. In another embodiment, heat provided by natural gas, or compressed natural gas, can be used for HHC distillation. In other embodiments, various other liquids can be used to transfer heat to HHC liquid for distillation.Type: ApplicationFiled: January 17, 2020Publication date: July 16, 2020Applicant: General Electric CompanyInventor: John Michael Repasky
-
Publication number: 20200215511Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.Type: ApplicationFiled: January 9, 2019Publication date: July 9, 2020Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
-
Patent number: 10627158Abstract: Systems and methods for increasing the efficiency of liquefied natural gas (LNG) production, as well as facilitating coproduction of electric power, and compressed natural gas (CNG) are described. The systems and methods facilitate producing an intermediate LNG at a higher temperature, recovering refrigeration from flash gas and boil-off gas from the LNG, using flash-gas and boil-off gas as fuel to generate electric power, and providing LNG, CNG, and electric power to a vehicle fueling facility.Type: GrantFiled: March 13, 2017Date of Patent: April 21, 2020Assignee: Baker Hughes, a GE Company, LLCInventors: John Michael Repasky, David Kennedy
-
Patent number: 10584918Abstract: Systems and methods are provided for adjusting a composition, pressure, and/or flow rate of a mixed refrigerant (MR) fluid in a liquefaction system to provide refrigeration to natural gas (NG) feedstock to produce liquefied natural gas (LNG). The MR fluid that is in circulation within a liquefaction system can include heavy components and light components. During LNG production, heavy components and/or light components of the MR fluid can be selectively removed from, and reintroduce into the MR fluid, thereby altering the composition of the remaining MR fluid in circulation. Adjusting the composition of the MR fluid in circulation within a liquefaction system can allow the system to be optimized to maximize efficiency, LNG production, and or profitability while the system is in operation.Type: GrantFiled: September 25, 2017Date of Patent: March 10, 2020Assignee: GE Oil & Gas, LLCInventors: John Michael Repasky, Matthew Thibodeaux, Anindra Mazumdar
-
Patent number: 10539364Abstract: Systems and methods are provided for increasing the efficiency of liquefied natural gas production and heavy hydrocarbon distillation. In one embodiment, air within an LNG production facility can be utilized as a heat source to provide heat to HHC liquid for distillation in a HHC distillation system. The mechanism of heat transfer from the air can be natural convection. In another embodiment, heat provided by natural gas, or compressed natural gas, can be used for HHC distillation. In other embodiments, various other liquids can be used to transfer heat to HHC liquid for distillation.Type: GrantFiled: March 13, 2017Date of Patent: January 21, 2020Assignee: General Electric CompanyInventor: John Michael Repasky
-
Patent number: 10450195Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“PDX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.Type: GrantFiled: April 20, 2015Date of Patent: October 22, 2019Assignee: Niquan Energy LLCInventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
-
Publication number: 20190284047Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.Type: ApplicationFiled: January 9, 2019Publication date: September 19, 2019Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
-
Publication number: 20180259249Abstract: Systems and methods for increasing the efficiency of liquefied natural gas (LNG) production, as well as facilitating coproduction of electric power, and compressed natural gas (CNG) are described. The systems and methods facilitate producing an intermediate LNG at a higher temperature, recovering refrigeration from flash gas and boil-off gas from the LNG, using flash-gas and boil-off gas as fuel to generate electric power, and providing LNG, CNG, and electric power to a vehicle fueling facility.Type: ApplicationFiled: March 13, 2017Publication date: September 13, 2018Inventors: John Michael Repasky, David Kennedy
-
Publication number: 20180259250Abstract: Systems and methods are provided for increasing the efficiency of liquefied natural gas production and heavy hydrocarbon distillation. In one embodiment, air within an LNG production facility can be utilized as a heat source to provide heat to HHC liquid for distillation in a HHC distillation system. The mechanism of heat transfer from the air can be natural convection. In another embodiment, heat provided by natural gas, or compressed natural gas, can be used for HHC distillation. In other embodiments, various other liquids can be used to transfer heat to HHC liquid for distillation.Type: ApplicationFiled: March 13, 2017Publication date: September 13, 2018Inventor: John Michael Repasky
-
Publication number: 20180259248Abstract: Systems and methods for increasing the efficiency of liquefied natural gas (LNG) production, as well as facilitating coproduction of electric power, and compressed natural gas (CNG) are described. The systems and methods facilitate producing an intermediate LNG at a higher temperature, recovering refrigeration from flash gas and boil-off gas from the LNG, using flash-gas and boil-off gas as fuel to generate electric power, and providing LNG, CNG, and electric power to a vehicle fueling facility.Type: ApplicationFiled: March 13, 2017Publication date: September 13, 2018Inventor: John Michael Repasky
-
Publication number: 20180209724Abstract: Systems and methods are provided for adjusting a composition, pressure, and/or flow rate of a mixed refrigerant (MR) fluid in a liquefaction system to provide refrigeration to natural gas (NG) feedstock to produce liquefied natural gas (LNG). The MR fluid that is in circulation within a liquefaction system can include heavy components and light components. During LNG production, heavy components and/or light components of the MR fluid can be selectively removed from, and reintroduce into the MR fluid, thereby altering the composition of the remaining MR fluid in circulation. Adjusting the composition of the MR fluid in circulation within a liquefaction system can allow the system to be optimized to maximize efficiency, LNG production, and or profitability while the system is in operation.Type: ApplicationFiled: September 25, 2017Publication date: July 26, 2018Inventors: John Michael Repasky, Matthew Thibodeaux, Anindra Mazumdar
-
Patent number: 9771882Abstract: A single control for manipulating a fuel valve, a choke condition, and an ignition system condition of an engine of a portable engine powered device that simplifies starting, stopping, and operation of the engine associated with use of the device. The control includes a dial that can be rotated to positions between a first radial position and a second radial position. When the dial is in the first radial position, the fuel valve is maintained in a closed position and the ignition system is grounded such that the engine is rendered inoperable. Rotation of the dial away from the first radial position completes the ignition circuit, opens the fuel valve, and initiates a choke position suitable for subsequent starting and self-sustained operation of the engine. The dial is also axially displaceable to activate an electronic starter for engines so equipped.Type: GrantFiled: September 28, 2016Date of Patent: September 26, 2017Assignee: Generac Power Systems, Inc.Inventors: Michael Repasky, Russell Saari, Glen Schneider, Gary Castaldo, Jennifer Caldwell
-
Publication number: 20170016406Abstract: A single control for manipulating a fuel valve, a choke condition, and an ignition system condition of an engine of a portable engine powered device that simplifies starting, stopping, and operation of the engine associated with use of the device. The control includes a dial that can be rotated to positions between a first radial position and a second radial position. When the dial is in the first radial position, the fuel valve is maintained in a closed position and the ignition system is grounded such that the engine is rendered inoperable. Rotation of the dial away from the first radial position completes the ignition circuit, opens the fuel valve, and initiates a choke position suitable for subsequent starting and self-sustained operation of the engine. The dial is also axially displaceable to activate an electronic starter for engines so equipped.Type: ApplicationFiled: September 28, 2016Publication date: January 19, 2017Inventors: Michael Repasky, Russell Saari, Glen Schneider, Gary Castaldo, Jennifer Caldwell
-
Patent number: 9476370Abstract: A single control for manipulating a fuel valve, a choke condition, and an ignition system condition of an engine of a portable engine powered device that simplifies starting, stopping, and operation of the engine associated with use of the device. The control includes a dial that can be rotated to positions between a first radial position and a second radial position. When the dial is in the first radial position, the fuel valve is maintained in a closed position and the ignition system is grounded such that the engine is rendered inoperable. Rotation of the dial away from the first radial position completes the ignition circuit, opens the fuel valve, and initiates a choke position suitable for subsequent starting and self-sustained operation of the engine. The dial is also axially displaceable to activate an electronic starter for engines so equipped.Type: GrantFiled: February 20, 2014Date of Patent: October 25, 2016Assignee: Generac Power Systems, Inc.Inventors: Michael Repasky, Russell Saari, Glen Schneider, Gary Castaldo, Jennifer Caldwell
-
Publication number: 20160160312Abstract: A hydrometallurgical system and process with a hydrometallurgical processing circuit integrated with an ion transport membrane assembly. The ion transport membrane assembly provide oxygen to the hydrometallurgical processing circuit.Type: ApplicationFiled: December 4, 2014Publication date: June 9, 2016Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Matthew J. Thayer, John Michael Repasky, Phillip Andrew Armstrong, John Elliott Bedenbaugh
-
Publication number: 20160016793Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“PDX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.Type: ApplicationFiled: April 20, 2015Publication date: January 21, 2016Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
-
Publication number: 20150233311Abstract: A single control for manipulating a fuel valve, a choke condition, and an ignition system condition of an engine of a portable engine powered device that simplifies starting, stopping, and operation of the engine associated with use of the device. The control includes a dial that can be rotated to positions between a first radial position and a second radial position. When the dial is in the first radial position, the fuel valve is maintained in a closed position and the ignition system is grounded such that the engine is rendered inoperable. Rotation of the dial away from the first radial position completes the ignition circuit, opens valve, and initiates a choke position suitable for subsequent starting and self-sustained operation of the engine. The dial is also axially displaceable to activate an electronic starter for engines so equipped.Type: ApplicationFiled: February 20, 2014Publication date: August 20, 2015Applicant: GENERAC POWER SYSTEMS, INC.Inventors: Michael Repasky, Russell Saari, Glen Schneider, Gary Castaldo, Jennifer Caldwell