Patents by Inventor Michael Robert Millhaem

Michael Robert Millhaem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11752622
    Abstract: An extension tool includes a plurality of sequentially arranged links moveable to a first position, the plurality of sequentially arranged links rigidly fixed to one another in the first position, the plurality of sequentially arranged links defining a first passage and a second passage, the second passage being separate from the first passage when the plurality of sequentially arranged links are rigidly fixed to one another.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: September 12, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem
  • Publication number: 20230250731
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew James Jenkins
  • Patent number: 11702955
    Abstract: A method of repairing a component of a gas turbine engine in situ, wherein the component includes a deposit, includes directing a flow of gas, which may be an oxygen-containing gas, to the deposit of the component; and heating the component including the deposit while the component is installed in the gas turbine engine and for a duration sufficient to substantially remove the deposit.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 18, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Michael Robert Millhaem, Andrew Crispin Graham, Byron Andrew Pritchard, Jr., David Scott Diwinsky, Jeremy Clyde Bailey, Michael Edward Eriksen, Ambarish Jayant Kulkarni
  • Patent number: 11692650
    Abstract: A selectively flexible extension tool includes: a line assembly comprising a first line and a second line; and a plurality of sequentially arranged links, the line assembly operable with the plurality of sequentially arranged links to move the plurality of sequentially arranged links between a slacked position and a tensioned position, the plurality of sequentially arranged links together comprising a first line guide and a second line guide, the first line of the line assembly extending through the first line guide and the second line of the line assembly extending through the second line guide; wherein the first line defines a first displacement when the plurality of sequentially arranged links are moved from the slacked position to the tensioned position, wherein the second line defines a second displacement when the plurality of sequentially arranged links are moved from the slacked position to the tensioned position, and wherein the first displacement is substantially equal to the second displacement.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: July 4, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem
  • Patent number: 11649735
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 16, 2023
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 11613003
    Abstract: An extension tool includes a plurality of sequentially arranged links moveable relative to one another. The plurality of sequentially arranged links include a first link. The extension tool further includes a line assembly having a line, the line including a first portion extending through the plurality of sequentially arranged links to the first link and a transition portion extending from the first portion through the first link. The extension tool further includes an attachment feature coupled to or formed integrally with the line of the line assembly at the transition portion of the line to support the line in the event of a failure of the line.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 28, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem
  • Patent number: 11555413
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Byron Andrew Pritchard, Jr., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11536198
    Abstract: A gas turbine engine includes a core cowl and a core contained within the core cowl. The core includes a compressor in fluid communication with a downstream combustor and a downstream turbine, the compressor including a compressor bleed port, wherein an undercowl space is defined between the core cowl and the core. The gas turbine engine further includes a cooling duct disposed at least partially in the undercowl space and having an inlet and an outlet, wherein the cooling duct is in fluid communication with a source of cooling air and is further in fluid communication with the compressor bleed port; a valve assembly including at least one valve disposed in the cooling duct; and a cooling blower disposed within the engine and operable to move an air flow from the inlet of the cooling duct towards the outlet of the cooling duct and through the compressor bleed port.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: December 27, 2022
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Christopher R. Bosco, Gerardo Perez, Hejie Li, Francisco Ernesto de la Pena, Alejandro Federico Medrano Perez, Andrew Campbell
  • Publication number: 20220389834
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11506077
    Abstract: An inflatable device equipped with a guiding mechanism and methods of installing the inflatable device to form a temporary barrier within a gas turbine engine are provided. In one aspect, an inflatable device includes a backbone and an inflatable bladder connected thereto. The backbone is formed of a flexible and inextensible material. The inflatable bladder is formed of an expandable material. To install the inflatable device within an annular chamber of a gas turbine engine, the backbone is inserted into a first access port of the engine and is moved circumferentially around the annulus of the chamber. The backbone is retrieved through a second access port. The inflatable bladder is moved into position within the chamber by pushing the backbone into the first access port and/or pulling the backbone out of the second access port. When positioned in place, the inflatable bladder is inflated to form an annular seal.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Deepak Trivedi, Ambarish Jayant Kulkarni, Michael Robert Millhaem
  • Publication number: 20220252010
    Abstract: Systems and methods for removing heat are provided. For example, a system comprises a support apparatus and a cooling apparatus, including a suction device for forcing air through a gas turbine engine, disposed on the support apparatus, which is moveable with respect to the engine to position the cooling apparatus in contact with an engine exhaust. A nozzle in operative communication with the suction device may force air through the engine. Further, the support apparatus may comprise a lift device, an angle adjustment mechanism, and a nozzle support element disposed on a longitudinal slide rail for adjusting a height, an angle, and a longitudinal position of the nozzle. A method of removing heat from a gas turbine engine after shutdown comprises positioning a cooling apparatus adjacent an exhaust; sealing the cooling apparatus to the exhaust; and operating a suction device of the cooling apparatus to move air through the engine.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: Michael Robert Millhaem, Byron Andrew Pritchard, JR., Michael Edward Eriksen
  • Publication number: 20220243612
    Abstract: An inflatable device equipped with a guiding mechanism and methods of installing the inflatable device to form a temporary barrier within a gas turbine engine are provided. In one aspect, an inflatable device includes a backbone and an inflatable bladder connected thereto. The backbone is formed of a flexible and inextensible material. The inflatable bladder is formed of an expandable material. To install the inflatable device within an annular chamber of a gas turbine engine, the backbone is inserted into a first access port of the engine and is moved circumferentially around the annulus of the chamber. The backbone is retrieved through a second access port. The inflatable bladder is moved into position within the chamber by pushing the backbone into the first access port and/or pulling the backbone out of the second access port. When positioned in place, the inflatable bladder is inflated to form an annular seal.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Inventors: Byron Andrew Pritchard, JR., Deepak Trivedi, Ambarish Jayant Kulkarni, Michael Robert Millhaem
  • Publication number: 20220235706
    Abstract: A method is provided for operating a gas turbine engine. The method includes: determining data indicative of an operation of a cooling system of the gas turbine engine during a shutdown of the gas turbine engine, following the shutdown of the gas turbine engine, or both; and modifying a startup schedule of the gas turbine engine in response to the determined data indicative of the operation of the cooling system of the gas turbine engine.
    Type: Application
    Filed: January 28, 2021
    Publication date: July 28, 2022
    Inventors: Michael Robert Millhaem, Christopher R. Bosco, Gerardo Perez, Hejie Li, Francisco Ernesto de la Pena, Alejandro Federico Medrano Perez, Andrew Campbell
  • Publication number: 20220235707
    Abstract: A gas turbine engine includes a core cowl and a core contained within the core cowl. The core includes a compressor in fluid communication with a downstream combustor and a downstream turbine, the compressor including a compressor bleed port, wherein an undercowl space is defined between the core cowl and the core. The gas turbine engine further includes a cooling duct disposed at least partially in the undercowl space and having an inlet and an outlet, wherein the cooling duct is in fluid communication with a source of cooling air and is further in fluid communication with the compressor bleed port; a valve assembly including at least one valve disposed in the cooling duct; and a cooling blower disposed within the engine and operable to move an air flow from the inlet of the cooling duct towards the outlet of the cooling duct and through the compressor bleed port.
    Type: Application
    Filed: July 19, 2021
    Publication date: July 28, 2022
    Inventors: Michael Robert Millhaem, Christopher R. Bosco, Gerardo Perez, Hejie Li, Francisco Ernesto de la Pena, Alejandro Federico Medrano Perez, Andrew Campbell
  • Patent number: 11371425
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang
  • Publication number: 20220090537
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Byron Andrew Pritchard, JR., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang
  • Publication number: 20220090516
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: April 1, 2021
    Publication date: March 24, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Publication number: 20210229270
    Abstract: An extension tool includes a plurality of sequentially arranged links moveable relative to one another. The plurality of sequentially arranged links include a first link. The extension tool further includes a line assembly having a line, the line including a first portion extending through the plurality of sequentially arranged links to the first link and a transition portion extending from the first portion through the first link. The extension tool further includes an attachment feature coupled to or formed integrally with the line of the line assembly at the transition portion of the line to support the line in the event of a failure of the line.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem
  • Publication number: 20210229269
    Abstract: An extension tool includes a plurality of sequentially arranged links moveable to a first position, the plurality of sequentially arranged links rigidly fixed to one another in the first position, the plurality of sequentially arranged links defining a first passage and a second passage, the second passage being separate from the first passage when the plurality of sequentially arranged links are rigidly fixed to one another.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 29, 2021
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem
  • Publication number: 20210231239
    Abstract: A selectively flexible extension tool includes: a line assembly comprising a first line and a second line; and a plurality of sequentially arranged links, the line assembly operable with the plurality of sequentially arranged links to move the plurality of sequentially arranged links between a slacked position and a tensioned position, the plurality of sequentially arranged links together comprising a first line guide and a second line guide, the first line of the line assembly extending through the first line guide and the second line of the line assembly extending through the second line guide; wherein the first line defines a first displacement when the plurality of sequentially arranged links are moved from the slacked position to the tensioned position, wherein the second line defines a second displacement when the plurality of sequentially arranged links are moved from the slacked position to the tensioned position, and wherein the first displacement is substantially equal to the second displacement.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 29, 2021
    Inventors: Andrew Crispin Graham, Tim Henri Ann Francois, Hendrik Pieter Jacobus de Bock, Michael Robert Millhaem