Patents by Inventor Michael Romain

Michael Romain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110156
    Abstract: This disclosure relates to cardiogenic mesoderm formation regulators and methods of use thereof, e.g., generating a multipotent cardiovascular progenitor cell by overexpressing Id1, Id2, Id3, Id4, Evx1, and/or Grrp1 in a stem cell.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 4, 2024
    Inventors: Alexandre Romain Colas, Mark Mercola, Wesley Lawrence McKeithan, Michael Shenghan Yu
  • Publication number: 20240086608
    Abstract: Embodiments include exerciser device placement in the development of an integrated circuit. Aspects of the invention include obtaining a design of an integrated circuit and creating a dynamic power blockage map for the integrated circuit. Aspects also include updating the integrated circuit design by placing one or more exercisers on the integrated circuit, wherein a location of the one or more exercisers on the integrated circuit is based on at least in part on the dynamic power blockage map. Based on a determination that the updated integrated circuit design complies with one or more design constraints, aspects further include outputting the updated integrated circuit design.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 14, 2024
    Inventors: Michael Romain, Lucas Dane LaLima, Michael Greene, Alper Buyuktosunoglu, Christopher Joseph Berry, Pawel Owczarczyk, Mark Cichanowski, William V. Huott, OFER GEVA, Jesse Peter Surprise, Eduard Herkel
  • Patent number: 11830778
    Abstract: A method can include obtaining characteristic data for a wafer. The characteristic data can correspond to the wafer in a processed state and can include a set of stress values of the wafer. The wafer can include a front side, a back side opposite the front side, and a set of regions. The set of stress values can include a first stress value corresponding to a first region. In the processed state, one or more front-side processes can be completed on the front side of the wafer. The method can include determining that the first stress value exceeds a stress threshold and generating a compensation map. The compensation map can identify one or more regions for forming one or more trenches. The method can include initiating, based on the compensation map, a formation of a first trench on the back side of the wafer in the first region.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: November 28, 2023
    Assignee: International Business Machines Corporation
    Inventors: David Wolpert, Daniel James Dechene, Lawrence A. Clevenger, Michael Romain, Somnath Ghosh
  • Patent number: 11817697
    Abstract: The method and systems described herein provide for identifying and mitigating undesirable power or voltage fluctuations in regions of a semiconductor device. For example, embodiments include detecting a region, such as an individual processor, of a processor chip is exhibiting a reduced power draw and a resulting localized voltage spike (e.g., a spike that exceeds Vmax) that would accelerate overall device end-of-life (EOL). The described systems respond by activating circuits or current generators located in the given region to draw additional power via a protective current. The protective current lowers the local voltages spikes back to within some pre-specified range (e.g., below a Vmax). The resulting reduction in the time above Vmax in testing reduces the number of devices that will need to be discarded due to Vmax violations as well as increases the expected reliability and lifespan of the device in operation.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: November 14, 2023
    Assignee: International Business Machines Corporation
    Inventors: Adam Benjamin Collura, Michael Romain, William V. Huott, Pawel Owczarczyk, Christian Jacobi, Anthony Saporito, Chung-Lung K. Shum, Alper Buyuktosunoglu, Tobias Webel, Michael Joseph Cadigan, Jr., Paul Jacob Logsdon, Sean Michael Carey, Stefan Payer, Karl Evan Smock Anderson, Mark Cichanowski
  • Publication number: 20230318286
    Abstract: The method and systems described herein provide for identifying and mitigating undesirable power or voltage fluctuations in regions of a semiconductor device. For example, embodiments include detecting a region, such as an individual processor, of a processor chip is exhibiting a reduced power draw and a resulting localized voltage spike (e.g., a spike that exceeds Vmax) that would accelerate overall device end-of-life (EOL). The described systems respond by activating circuits or current generators located in the given region to draw additional power via a protective current. The protective current lowers the local voltages spikes back to within some pre-specified range (e.g., below a Vmax). The resulting reduction in the time above Vmax in testing reduces the number of devices that will need to be discarded due to Vmax violations as well as increases the expected reliability and lifespan of the device in operation.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 5, 2023
    Inventors: Adam Benjamin COLLURA, Michael ROMAIN, William V. HUOTT, Pawel OWCZARCZYK, Christian JACOBI, Anthony SAPORITO, Chung-Lung K. SHUM, Alper BUYUKTOSUNOGLU, Tobias WEBEL, Michael Joseph CADIGAN, JR., Paul Jacob LOGSDON, Sean Michael CAREY, Stefan PAYER, Karl Evan Smock ANDERSON, Mark CICHANOWSKI
  • Publication number: 20220148927
    Abstract: A method can include obtaining characteristic data for a wafer. The characteristic data can correspond to the wafer in a processed state and can include a set of stress values of the wafer. The wafer can include a front side, a back side opposite the front side, and a set of regions. The set of stress values can include a first stress value corresponding to a first region. In the processed state, one or more front-side processes can be completed on the front side of the wafer. The method can include determining that the first stress value exceeds a stress threshold and generating a compensation map. The compensation map can identify one or more regions for forming one or more trenches. The method can include initiating, based on the compensation map, a formation of a first trench on the back side of the wafer in the first region.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 12, 2022
    Inventors: David Wolpert, DANIEL JAMES DECHENE, Lawrence A. Clevenger, Michael ROMAIN, SOMNATH GHOSH
  • Patent number: 11023634
    Abstract: Aspects of the invention include a method that includes performing timing analysis of an integrated circuit design to identify a critical path. The critical path fails to meet a corresponding timing requirement. The method also includes determining an amount of slack needed by the critical path. The amount of slack is an amount by which the critical path fails to meet the corresponding timing requirement. Downstream slack is created in each path of a next cycle, wherein each path of the next cycle is immediately downstream of the critical path. Slack stealing is performed to improve timing of the critical path based on the downstream slack created in each path of the next cycle.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Romain, Eddy St. Juste
  • Patent number: 10997011
    Abstract: Methods and systems for handling a single event upset. The methods include, and/or the systems include functionality for, receiving, from a monitored device, data at a first input of an initial state change device; detecting, based on receiving the data, a state change; asserting, based on detecting the state change, an initial state change device enable signal; transferring the first data from the first input to a first output of the initial state change device (which may be operatively connected to a second input of a state hold device); triggering, based on detecting the state change, a delay counter; making a determination that the delay period counted by the delay counter expired without receipt of an error detection signal; and based on the determination, asserting a state hold device enable signal to allow the data to pass from the second input to a second output of the state hold device.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 4, 2021
    Assignee: Arista Networks, Inc.
    Inventors: David Anthony Cananzi, Elliott B. Van Hartingsveldt, Michael Romain
  • Publication number: 20200142764
    Abstract: Methods and systems for handling a single event upset. The methods include, and/or the systems include functionality for, receiving, from a monitored device, data at a first input of an initial state change device; detecting, based on receiving the data, a state change; asserting, based on detecting the state change, an initial state change device enable signal; transferring the first data from the first input to a first output of the initial state change device (which may be operatively connected to a second input of a state hold device); triggering, based on detecting the state change, a delay counter; making a determination that the delay period counted by the delay counter expired without receipt of an error detection signal; and based on the determination, asserting a state hold device enable signal to allow the data to pass from the second input to a second output of the state hold device.
    Type: Application
    Filed: December 17, 2019
    Publication date: May 7, 2020
    Inventors: David Anthony Cananzi, Elliott B. Van Hartingsveldt, Michael Romain
  • Patent number: 10565048
    Abstract: Methods and systems for handling a single event upset. The methods include, and/or the systems include functionality for, receiving, from a monitored device, data at a first input of an initial state change device; detecting, based on receiving the data, a state change; asserting, based on detecting the state change, an initial state change device enable signal; transferring the first data from the first input to a first output of the initial state change device (which may be operatively connected to a second input of a state hold device); triggering, based on detecting the state change, a delay counter; making a determination that the delay period counted by the delay counter expired without receipt of an error detection signal; and based on the determination, asserting a state hold device enable signal to allow the data to pass from the second input to a second output of the state hold device.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 18, 2020
    Assignee: Arista Networks, Inc.
    Inventors: David Anthony Cananzi, Elliott B. Van Hartingsveldt, Michael Romain
  • Publication number: 20190171508
    Abstract: Methods and systems for handling a single event upset. The methods include, and/or the systems include functionality for, receiving, from a monitored device, data at a first input of an initial state change device; detecting, based on receiving the data, a state change; asserting, based on detecting the state change, an initial state change device enable signal; transferring the first data from the first input to a first output of the initial state change device (which may be operatively connected to a second input of a state hold device); triggering, based on detecting the state change, a delay counter; making a determination that the delay period counted by the delay counter expired without receipt of an error detection signal; and based on the determination, asserting a state hold device enable signal to allow the data to pass from the second input to a second output of the state hold device.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: David Anthony Cananzi, Elliott B. Van Hartingsveldt, Michael Romain