Patents by Inventor Michael Roy Smith
Michael Roy Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250019311Abstract: The processes and products described herein optimize transformation of BNNT as-synthesized material into BNNT intermediary materials. Process steps include refining to remove boron particulates, high temperature refining to break bonds between BNNT, h-BN nanocages, h-BN nanosheets and amorphous BN particles, centrifuging and microfluidic separation, and electrophoresis. Resultant BNNT intermediary materials include purified BNNT in solution, BNNT gels, h-BN nanocages, and h-BN nanosheets, gel spun BNNT fibers, hydrophilic defect enhanced BNNT materials, BNNT patterned sheets, and BNNT strands. Applications that will utilize these BNNT precursor feedstock materials include making BNNT based aligned components, thin films, aerogels, thermal conductivity enhancements, structural materials, ceramic, metal, and polymer composites, and removal of PFAS pollutants from water.Type: ApplicationFiled: October 28, 2022Publication date: January 16, 2025Inventors: Mohammad H. KIRMANI, Thomas G. DUSHATINSKI, Clay F. HUFF, Kevin C. JORDAN, Eric R. KENNEDY, Lyndsey R. SCAMMELL, Michael W. SMITH, Jonathan C. STEVENS, R. Roy WHITNEY
-
Publication number: 20150353448Abstract: A process for a liquid phase selective hydrogenation of acetylene to ethylene in a reaction zone. In order to decrease the selectivity to C4+ hydrocarbons, the concentration of acetylene in solvent is lowered by recycling solvent, using a split feed injection, or both. The streams can be split in to equal or unequal portions. A hot separator may be used to separate solvent from the reactor effluent, and the solvent may be recovered and used to decrease the concentration of acetylene in the solvent.Type: ApplicationFiled: June 6, 2014Publication date: December 10, 2015Inventors: Timur Voskoboynikov, Vincent Mezera, Laura E. Leonard, Paul T. Barger, Clayton Colin Sadler, Michael Roy Smith, Andrea G. Bozzano
-
Publication number: 20150165411Abstract: Methods and reactors are provided for producing acetylene. The method includes combusting a fuel with oxygen in a combustor to produce a carrier gas, and accelerating the carrier gas to a supersonic speed in a converging/diverging nozzle prior to the carrier gas entering a reaction zone. A nozzle exit temperature of the carrier gas is controlled from about 1,200 degrees centigrade (° C.) to about 2,500° C. by adding a heat sink gas to the carrier gas before the reaction zone, where the heat sink gas is different than the fuel and the oxygen. Methane is added to the carrier gas in the reaction zone, and a shock wave is produced in the reaction zone by adjusting a back pressure such that the methane reacts to form acetylene.Type: ApplicationFiled: December 12, 2013Publication date: June 18, 2015Applicant: UOP LLCInventors: Rajeswar Gattupalli, Laura E. Leonard, Michael Roy Smith
-
Publication number: 20120330076Abstract: One exemplary embodiment can be a process for alkylating. The process can include providing a first effluent from a first alkylation zone, and providing a second effluent from a second alkylation zone. Generally, the first and second effluents are provided to an exchanger for reboiling a fractionation zone.Type: ApplicationFiled: June 27, 2011Publication date: December 27, 2012Applicant: UOP, LLCInventors: Michael Roy Smith, Russell Clarence Schulz, Phillip F. Daly, Paul Alvin Sechrist
-
Patent number: 7861109Abstract: A method of failure recovery in a network element is disclosed. The method includes indicating to a number of forwarding engines that a forwarding engine has completed a switchover operation and causing at least one of the forwarding engines to acknowledge that the forwarding engine has completed the switchover operation in response to the indication.Type: GrantFiled: November 30, 2007Date of Patent: December 28, 2010Assignee: Cisco Technology, Inc.Inventors: Marcus A. Maranhao, Michael Roy Smith, John M. Knight, Rohit Shrivastava, Ana H. Burghelea
-
Patent number: 7794588Abstract: A process is provided for producing low sulfur diesel having a reduced poly-aromatic level where at least a portion of the poly-aromatics are converted to mono-aromatics. In one aspect, the process separates the temperature and pressure requirements for obtaining low levels of sulfur from the temperature and pressure requirements to saturate poly-aromatics to mono-aromatics. By one approach, the process first converts a diesel boiling range hydrocarbon stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of poly-aromatics. Hydrogen is then admixed in the hydrotreating zone effluent or at least a portion thereof, which is then reacted in a substantially liquid-phase continuous reaction zone to effect saturation of poly-aromatics to provide a liquid-phase continuous reaction zone effluent having a reduced level of poly-aromatics relative to the diesel feed.Type: GrantFiled: October 15, 2007Date of Patent: September 14, 2010Assignee: UOP LLCInventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
-
Patent number: 7794585Abstract: Methods of hydroprocessing hydrocarbon streams are provided that employ substantially liquid-phase hydroprocessing conditions. In one aspect, the method includes directing a hydrocarbonaceous feed stock to a first substantially liquid-phase hydroprocessing zone wherein an effluent from the first substantially liquid-phase hydroprocessing zone is directed to a second substantially liquid-phase hydroprocessing zone generally undiluted with other hydrocarbon streams. In another aspect, the method recycles a liquid portion of a liquid hydrocarbonaceous effluent from the second substantially liquid-phase hydroprocessing zone, which preferably includes an amount of hydrogen dissolved therein, to the hydrocarbonaceous feed stock so that the feed to the first substantially liquid-phase hydroprocessing zone has a relatively larger concentration of dissolved hydrogen relative to the hydrocarbonaceous feed stock.Type: GrantFiled: October 15, 2007Date of Patent: September 14, 2010Assignee: UOP LLCInventors: Laura Elise Leonard, Peter Kokayeff, Michael Roy Smith
-
Patent number: 7790020Abstract: A process is provided for producing low sulfur diesel having a high cetane number where the temperature and pressure requirements for obtaining low levels of sulfur is separated from the temperature and pressure requirements for improving cetane. In one aspect, a low pressure hydrodesulfurization zone and a high pressure aromatic saturation zone are employed to sequentially achieve the desired sulfur and cetane levels. In another aspect, the process first converts a diesel boiling range hydrocarbonaceous stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of aromatics. Hydrogen is then admixed with the hydrotreating zone effluent, which is then reacted in a substantially liquid-phase continuous reaction zone substantially undiluted with other streams to effect saturation of aromatics to provide a liquid-phase continuous reaction zone effluent having an improved cetane number.Type: GrantFiled: October 15, 2007Date of Patent: September 7, 2010Assignee: UOP LLCInventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
-
Publication number: 20090095651Abstract: Methods of hydroprocessing hydrocarbon streams are provided that employ substantially liquid-phase hydroprocessing conditions. In one aspect, the method includes directing a hydrocarbonaceous feed stock to a first substantially liquid-phase hydroprocessing zone wherein an effluent from the first substantially liquid-phase hydroprocessing zone is directed to a second substantially liquid-phase hydroprocessing zone generally undiluted with other hydrocarbon streams. In another aspect, the method recycles a liquid portion of a liquid hydrocarbonaceous effluent from the second substantially liquid-phase hydroprocessing zone, which preferably includes an amount of hydrogen dissolved therein, to the hydrocarbonaceous feed stock so that the feed to the first substantially liquid-phase hydroprocessing zone has a relatively larger concentration of dissolved hydrogen relative to the hydrocarbonaceous feed stock.Type: ApplicationFiled: October 15, 2007Publication date: April 16, 2009Inventors: Laura Elise Leonard, Peter Kokayeff, Michael Roy Smith
-
Publication number: 20090095656Abstract: A process is provided for producing low sulfur diesel having a high cetane number where the temperature and pressure requirements for obtaining low levels of sulfur is separated from the temperature and pressure requirements for improving cetane. In one aspect, a low pressure hydrodesulfurization zone and a high pressure aromatic saturation zone are employed to sequentially achieve the desired sulfur and cetane levels. In another aspect, the process first converts a diesel boiling range hydrocarbonaceous stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of aromatics. Hydrogen is then admixed with the hydrotreating zone effluent, which is then reacted in a substantially liquid-phase continuous reaction zone substantially undiluted with other streams to effect saturation of aromatics to provide a liquid-phase continuous reaction zone effluent having an improved cetane number.Type: ApplicationFiled: October 15, 2007Publication date: April 16, 2009Inventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
-
Publication number: 20090095652Abstract: A process is provided for producing low sulfur diesel having a reduced poly-aromatic level where at least a portion of the poly-aromatics are converted to mono-aromatics. In one aspect, the process separates the temperature and pressure requirements for obtaining low levels of sulfur from the temperature and pressure requirements to saturate poly-aromatics to mono-aromatics. By one approach, the process first converts a diesel boiling range hydrocarbon stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of poly-aromatics. Hydrogen is then admixed in the hydrotreating zone effluent or at least a portion thereof, which is then reacted in a substantially liquid-phase continuous reaction zone to effect saturation of poly-aromatics to provide a liquid-phase continuous reaction zone effluent having a reduced level of poly-aromatics relative to the diesel feed.Type: ApplicationFiled: October 15, 2007Publication date: April 16, 2009Inventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
-
Patent number: 7421612Abstract: A method of failure recovery in a network element is disclosed. The method includes indicating to a number of forwarding engines that a forwarding engine has completed a switchover operation and causing at least one of the forwarding engines to acknowledge that the forwarding engine has completed the switchover operation in response to the indication.Type: GrantFiled: January 13, 2003Date of Patent: September 2, 2008Assignee: Cisco Technology, Inc.Inventors: Marcus A. Maranhao, Michael Roy Smith, John M. Knight, Rohit Shrivastava, Ana H. Burghelea
-
Patent number: 7139928Abstract: A network element is disclosed that provides redundancy within the network element that, in turn, provides fault tolerance for the failure of one or more processing units therein. In one embodiment, a network element according to the present invention includes N interface units, M processing units and a number of links. The value of N is an integer greater than 1. Each interface unit is coupled to L+1 processing units. The value of L is an integer greater than 0 and less than N, and the value of M equals N plus L. Each of the links is configured to couple one of the interface units and one of the processing units. Each of the interface units is configured to select one of the links that couples the interface unit and ones of the processing units, and the links include a primary link and a standby link.Type: GrantFiled: October 17, 2002Date of Patent: November 21, 2006Assignee: Cisco Technology, Inc.Inventors: Dipankar Bhattacharya, Michael Roy Smith, Kevin Morishige
-
Patent number: 5833795Abstract: A method of repairing a composite material product by adhering a repair patch to the composite material product with an adhesive or epoxy resin that includes magnetic particles. Thus, the adhesive or epoxy resin can be cured by electromagnetically exciting the magnetic particles, such as by microwave heating. The electromagnetically excited magnetic particles internally heat the adhesive or epoxy resin to the predetermined Curie Point temperature of the magnetic particles such that the adhesive or epoxy resin cures in a uniform and inspectable fashion. The magnetic particles can be mixed into an adhesive, such as a paste adhesive, a film adhesive or a foam adhesive, to create a magnetic particle integrated adhesive. The magnetic particle integrated adhesive can then be applied between a precured repair patch and the underlying composite material product.Type: GrantFiled: September 19, 1996Date of Patent: November 10, 1998Assignee: McDonnell Douglas CorporationInventors: Michael Roy Smith, Kevin Dale Walters