Patents by Inventor Michael Rueter

Michael Rueter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050014636
    Abstract: Intermediate precursor compositions for use in manufacturing supported reactive catalysts having a controlled coordination structure, and methods for manufacturing such precursor compositions are disclosed. The precursor compositions include a catalyst complex formed from catalyst atoms and a control agent that is applied to a substrate. Reduction of the catalyst complex yields supported reactive catalyst in which a preponderance of the top or outer layer of atoms of the catalyst particles exhibit a controlled coordination number of 2. The supported catalysts are useful for a variety of chemical reactions, including the preparation of hydrogen peroxide with high selectivity.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 20, 2005
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20040191159
    Abstract: An improved catalytic process for producing hydrogen peroxide directly by reaction of hydrogen and oxygen is disclosed. The process employs staged or sequential feeding of portions of the hydrogen feedstream into zones in the catalytic reactor in amounts sufficient to maintain an essentially constant and preferred ratio of oxygen to hydrogen at the inlet to each of the vessel's zones whereby high selectivity for hydrogen peroxide production is achieved and excess oxygen recycle requirements are minimized.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventor: Michael Rueter
  • Patent number: 6746597
    Abstract: A noble metal nanometer-sized catalyst composition is described along with the method for preparation of the composition. The crystal face of the catalyst contains a preponderance of (111) type crystal phase exposure. The crystal phase exposure is controlled by sequestering the noble metal cation before deposition on a catalyst support. Controlled catalyst face exposition combined with the nanometer scale of the catalyst increases the catalyst selectivity and activity, particularly for hydrogenation and dehydrogenation reactions.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 8, 2004
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20040018143
    Abstract: A process for catalytically producing hydrogen peroxide from hydrogen and oxygen feeds by contacting them with a supported noble metal catalyst and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10−4 and 5.0×10−4 at reaction condition of 0-100° C. temperature and 100-3,000 psig pressure. The catalyst comprises supported noble metal particles having an exposed crystal face atomic surface structure comprising atoms exhibiting a controlled coordination number of two (2). The nearest neighbors of each top-layer atom are two other top-layer atoms, also having a controlled coordination number of two (2).
    Type: Application
    Filed: February 5, 2003
    Publication date: January 29, 2004
    Applicant: Hydrocarbon Technologies Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20030232721
    Abstract: A noble metal nanometer-sized catalyst composition is described along with the method for preparation of the composition. The crystal face of the catalyst contains a preponderance of (111) type crystal phase exposure. The crystal phase exposure is controlled by sequestering the noble metal cation before deposition on a catalyst support. Controlled catalyst face exposition combined with the nanometer scale of the catalyst increases the catalyst selectivity and activity, particularly for hydrogenation and dehydrogenation reactions.
    Type: Application
    Filed: January 31, 2002
    Publication date: December 18, 2003
    Applicant: Hydrocarbon Technologies Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20030216245
    Abstract: A method for regenerating spent supported metal catalysts comprising treating the spent catalyst with an organo-metallic complex forming agent having an ionization constant pK1 of at least 2.5. The catalyst activity is restored to an activity level near to or greater than the fresh catalyst. The regeneration method is particularly useful for regenerating spent palladium catalysts on an alumina support as utilized for the hydrogenation of ethyl anthraquinone (EAQ) in the production of hydrogen peroxide.
    Type: Application
    Filed: December 20, 2002
    Publication date: November 20, 2003
    Inventors: Bing Zhou, Michael Rueter
  • Patent number: 6586480
    Abstract: Process and economic advantages are achieved by the integration of a Fischer Tropsch process for hydrocarbon liquids production as a retrofit in an installation for the production of ammonia fertilizer from fossil fuel derived syngas. Utilization of most of the CO and part of the H2 in the syngas stream during Fischer-Tropsch synthesis as the first step in the integrated process produces hydrocarbon products while the F-T effluent containing unreacted hydrogen gas at the necessary ratio of H2/N2 is used in the second step of ammonia synthesis. The overall product slate as appropriate for maximum economic performance of the installation is thus achieved.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: July 1, 2003
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Yijun Lu, Michael Rueter
  • Patent number: 6576214
    Abstract: A process for catalytically directly producing hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing feeds by contacting them with a supported noble metal phase-controlled catalyst and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10−4 and 5.0×10−4 at reaction condition of 0-100° C. temperature and 100-3,000 psig pressure. Unconverted feed gas and organic liquid solvent solution are usually recovered and recycled back to the reactor along with any recovered catalyst. If desired, the hydrogen peroxide product can be fed together with an organic chemical feedstock such as propylene and with the organic liquid solvent solution into a second catalytic reaction step which oxidizes the feedstock to produce a desired crude oxidized organic product such as propylene oxide, which may be purified by distillation steps and recovered from the solvent solution.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: June 10, 2003
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael A. Rueter, Lap-Keung Lee, Bruce P. Pelrine
  • Patent number: 6534661
    Abstract: The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: March 18, 2003
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Patent number: 6517840
    Abstract: A process for recovering isoflavone values from a biomass in which the isoflavone values are extracted from the biomass with a selective solvent for the isoflavone values, solid isoflavone values and the selective solvent are contacted with a nonsolvent or antisolvent for the isoflavone value which is miscible with the selective solvent. Optionally the nonsolvent or antisolvent is admixed with water during the contact with the solid isoflavone values to improve the purity and recovery of the solid isoflavone values.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: February 11, 2003
    Assignee: Cognis Corporation
    Inventors: William G. Kozak, Puvin Pichai, Patricia J. Voorstad, Sang I. Kang, Michael Rueter, Jonathan D. Thomas
  • Patent number: 6500968
    Abstract: A process for producing oxidized organic chemical products such as propylene oxide from various organic chemical feedstocks utilizing as oxidant directly produced hydrogen peroxide (H2O2) intermediate oxidizing agent. The hydrogen peroxide intermediate is directly produced from hydrogen and oxygen feeds plus a suitable solvent in a first catalytic reaction step utilizing an active supported phase-controlled noble metal catalyst at reaction conditions of 0-100° C. temperature and 300-3,000 psig pressure. An organic chemical feedstock such as propylene together with the hydrogen peroxide intermediate and solvent solution are fed into a second catalytic reactor maintained at 0-150° C. temperature and 15-1,500 psig pressure and oxidized to produce a desired crude oxidized organic product such as propylene oxide, which is purified by distillation steps and recovered from the solvent solution.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: December 31, 2002
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael A. Rueter
  • Patent number: 6500969
    Abstract: A process for producing oxidized organic chemical products from various organic chemical feedstocks utilizing as oxidant hydrogen peroxide (H2O2) produced by noble metal nanocatalysis with high selectivity at low hydrogen concentration. The organic chemical oxidation process step can optionally be carried out in situ concurrent with the production of hydrogen peroxide or in a two stage process. In the two stage process, the hydrogen peroxide intermediate is directly produced by noble metal nanocatalysis from hydrogen and oxygen feeds plus a suitable solvent in a first catalytic reaction step. An organic chemical feedstock and the hydrogen peroxide intermediate and solvent solution are fed into a second catalytic reactor to produce an oxidized organic chemical product.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: December 31, 2002
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20020106320
    Abstract: A process for catalytically directly producing hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing feeds by contacting them with a supported noble metal phase-controlled catalyst and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10−4 and 5.0×10−4 at reaction condition of 0-100° C. temperature and 100-3,000 psig pressure. Unconverted feed gas and organic liquid solvent solution are usually recovered and recycled back to the reactor along with any recovered catalyst. If desired, the hydrogen peroxide product can be fed together with an organic chemical feedstock such as propylene and with the organic liquid solvent solution into a second catalytic reaction step which oxidizes the feedstock to produce a desired crude oxidized organic product such as propylene oxide, which may be purified by distillation steps and recovered from the solvent solution.
    Type: Application
    Filed: May 29, 2001
    Publication date: August 8, 2002
    Inventors: Bing Zhou, Michael A. Rueter, Lap-Keung Lee, Bruce P. Pelrine
  • Publication number: 20010016187
    Abstract: A process for producing oxidized organic chemical products such as propylene oxide from various organic chemical feedstocks utilizing as oxidant directly produced hydrogen peroxide (H2O2) intermediate oxidizing agent. The hydrogen peroxide intermediate is directly produced from hydrogen and oxygen feeds plus a suitable solvent in a first catalytic reaction step utilizing an active supported phase-controlled noble metal catalyst at reaction conditions of 0-100° C. temperature and 300-3,000 psig pressure. An organic chemical feedstock such as propylene together with the hydrogen peroxide intermediate and solvent solution are fed into a second catalytic reactor maintained at 0-150° C. temperature and 15-1,500 psig pressure and oxidized to produce a desired crude oxidized organic product such as propylene oxide, which is purified by distillation steps and recovered from the solvent solution.
    Type: Application
    Filed: December 8, 2000
    Publication date: August 23, 2001
    Applicant: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael A. Rueter
  • Patent number: 6028230
    Abstract: The amount of high molecular weight impurity present in a polyether polyol produced by alkoxylation of an active hydrogen-containing initiator using an epoxide such as propylene oxide and a substantially amorphous highly active double metal cyanide complex catalyst may be advantageously lowered by having a non-protic Lewis acid present during the epoxide polymerization. The use of halides such as zinc chloride and aluminum chloride is especially effective for such purposes. In a preferred embodiment, minor amounts of water are also present during polymerization. The higher purity polyether polyols thereby produced are particularly useful in the preparation of slab and molded polyurethane foams, which tend to collapse or become excessively tight when elevated levels of high molecular tail are present in the polyether polyol.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: February 22, 2000
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Bi Le-Khac, Ulrich B. Holeschovsky, Michael A. Rueter
  • Patent number: 6024840
    Abstract: Propylene oxide obtained by an epoxidation process which uses methanol as a solvent may be effectively treated to remove acetaldehyde by subjecting the crude epoxidation reaction product to fractional distillation. The methanol solvent is utilized during such distillation to lower the relative volatility of the acetaldehyde impurity, thereby making it possible to obtain a bottoms fraction containing substantially all the acetaldehyde. Purified propylene oxide having a reduced acetaldehyde concentration is removed as an overhead stream. Water may also be effectively separated from the propylene oxide using this procedure.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: February 15, 2000
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Michael A. Rueter
  • Patent number: 5863391
    Abstract: Acetaldehyde may be effectively removed from a contaminated methanol stream using a distillation method wherein a solvent stream containing a relatively heavy polar compound such as water or propylene glycol is utilized as an extractive distillation solvent. Following the separation of the polar compound from the bottoms stream obtained by extractive distillation, the purified methanol may be recycled for use as a reaction solvent in an olefin epoxidation process.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: January 26, 1999
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Michael A. Rueter, John C. Jubin, Jr.
  • Patent number: 5849938
    Abstract: Propylene is separated from the methanol present as a solvent in a crude olefin epoxidation product by means of an extractive distillation wherein a relatively heavy polar solvent having hydroxy groups such as water or propylene glycol is used as the extractive solvent. The method is also useful for removing water and impurities such as acetaldehyde from the propylene oxide.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: December 15, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Michael A. Rueter, John C. Jubin, Jr.
  • Patent number: 5782989
    Abstract: Polymer scale removal from vinyl polymerization reactors is effected without the use of polar aprotic solvents or aromatic solvents, by adding to the reactor, a scale removal composition comprising acetone, a most minor amount of a strong base, and a minor amount of a hydroxyl- or amino-functional polar organic solvent. The composition may contain surfactants, chelating or sequestering agents, detergent builders, and the like, and water in amounts of up to about 3 weight percent. Scale removal is efficient and rapid when the scale removing composition is agitated in the reactor at temperatures ranging from about 50.degree. C. to 120.degree. C.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: July 21, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Michael A. Rueter
  • Patent number: 5495055
    Abstract: A deactivated supported ruthenium catalyst which has been used to continuously hydrogenate an aqueous acetone stream is regenerated by contacting with steam at an elevated temperature. Periodic regeneration in this manner serves to maintain a high rate of reaction in a process which converts acetone to isopropanol.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: February 27, 1996
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Michael A. Rueter