Patents by Inventor Michael S. Cafferty
Michael S. Cafferty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10732038Abstract: A light-emitting module for use in a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The light-emitting module includes an LED light source capable of emitting light wherein the light is directed thereby defining an optical path and a plurality of optical components. The plurality of optical components includes a collimating lens, a first optical diffuser, a circular polarizer, and a focusing lens wherein the plurality of optical components is disposed within the optical path of the light from the LED light source.Type: GrantFiled: September 17, 2018Date of Patent: August 4, 2020Inventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10345146Abstract: An optical component group for use in a spectrometer module of a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The optical component group includes a light dispersing element and an achromatic lens assembly disposed between the light dispersing element and a light entrance port of the spectrometer module where the achromatic lens assembly is thermo-compensating permitting thermal expansion and contraction of the achromatic lens assembly in a linear direction where the linear directions is also transverse to a light beam from the light entrance port through the achromatic lens assembly and to the light dispersing element and back through the achromatic lens assembly.Type: GrantFiled: September 17, 2018Date of Patent: July 9, 2019Inventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10338058Abstract: A calibrating-light module for use in a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The calibrating-light module includes a calibrating module housing, a light beam receiving portion connected to a first end of the calibrating module housing, a calibrating light portion connected to a side of the calibrating module housing wherein the side is transverse to the first end, and an optic fiber portion connected to a second end of the calibrating module housing wherein the calibrating module housing, the light beam receiving portion and the optic fiber portion are aligned with an optical path and the calibrating light portion is spaced from and transverse to the optical path.Type: GrantFiled: September 17, 2018Date of Patent: July 2, 2019Assignee: Sanvita Medical LLCInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10337980Abstract: A replaceable cuvette assembly for use in an optical absorbance measurement system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The replaceable cuvette assembly includes a cuvette substrate and a cuvette module fixedly connected to the cuvette substrate wherein the cuvette substrate is a support for securing the cuvette assembly within the optical absorbance measurement system. The cuvette module has a sample inlet port, a sample outlet port, an electronic chip assembly, a sample receiving chamber that fluidly communicates with the sample inlet port and the sample outlet port, a first cuvette window, and a second cuvette window forming a portion of the sample receiving chamber. The first cuvette window and the second cuvette window are aligned with each other defining a cuvette optical path length between the first cuvette window and the second cuvette window and disposed within an optical path of the optical absorbance measurement system.Type: GrantFiled: September 18, 2018Date of Patent: July 2, 2019Inventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20190033287Abstract: A replaceable cuvette assembly for use in an optical absorbance measurement system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The replaceable cuvette assembly includes a cuvette substrate and a cuvette module fixedly connected to the cuvette substrate wherein the cuvette substrate is a support for securing the cuvette assembly within the optical absorbance measurement system. The cuvette module has a sample inlet port, a sample outlet port, an electronic chip assembly, a sample receiving chamber that fluidly communicates with the sample inlet port and the sample outlet port, a first cuvette window, and a second cuvette window forming a portion of the sample receiving chamber. The first cuvette window and the second cuvette window are aligned with each other defining a cuvette optical path length between the first cuvette window and the second cuvette window and disposed within an optical path of the optical absorbance measurement system.Type: ApplicationFiled: September 18, 2018Publication date: January 31, 2019Applicant: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20190017992Abstract: A calibrating-light module for use in a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The calibrating-light module includes a calibrating module housing, a light beam receiving portion connected to a first end of the calibrating module housing, a calibrating light portion connected to a side of the calibrating module housing wherein the side is transverse to the first end, and an optic fiber portion connected to a second end of the calibrating module housing wherein the calibrating module housing, the light beam receiving portion and the optic fiber portion are aligned with an optical path and the calibrating light portion is spaced from and transverse to the optical path.Type: ApplicationFiled: September 17, 2018Publication date: January 17, 2019Applicant: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20190017991Abstract: A light-emitting module for use in a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The light-emitting module includes an LED light source capable of emitting light wherein the light is directed thereby defining an optical path and a plurality of optical components.Type: ApplicationFiled: September 17, 2018Publication date: January 17, 2019Applicant: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20190017993Abstract: An optical component group for use in a spectrometer module of a system for measuring whole-blood hemoglobin parameters or whole-blood bilirubin parameters. The optical component group includes a light dispersing element and an achromatic lens assembly disposed between the light dispersing element and a light entrance port of the spectrometer module where the achromatic lens assembly is thermo-compensating permitting thermal expansion and contraction of the achromatic lens assembly in a linear direction where the linear directions is also transverse to a light beam from the light entrance port through the achromatic lens assembly and to the light dispersing element and back through the achromatic lens assembly.Type: ApplicationFiled: September 17, 2018Publication date: January 17, 2019Applicant: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10151630Abstract: An optical spectrometer for use in a COOx analyzer includes a spectrometer housing having an optical fiber housing end, a light-receiving input slit positioned adjacent the optical fiber housing end, a light dispersing element mounted to but spaced from the optical fiber housing end and positioned within an optical path along which light travels from the light-receiving input slit. The light dispersing element receives the light transmitted through the input slit and separates the light into a plurality of light beams, a light-array detector capable of receiving the plurality of light beams and converting the plurality of light beams into the electrical signal, an achromatic lens positioned in the optical path to direct the light from the input slit to the light dispersing element and to direct the plurality of light beams reflected from the light dispersing element onto the light-array detector, and a thermal-compensating means for the spectrometer housing.Type: GrantFiled: February 4, 2016Date of Patent: December 11, 2018Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10088360Abstract: A compact optical spectrometer for measuring hemoglobin parameters in whole blood includes an enclosed spectrometer housing having a light entrance port, a light input slit disposed on one side of a circuit board substrate and positioned adjacent to and aligned with the light entrance port, a light-array detector disposed on the one side of the circuit board substrate adjacent the light input slit, a light dispersing element disposed downstream from the light input slit and an achromatic lens disposed between the light input slit and the light dispersing element to direct the light from the input slit to the light dispersing element and to direct the dispersed light from the light dispersing element to the light-array detector.Type: GrantFiled: February 4, 2016Date of Patent: October 2, 2018Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 10088468Abstract: A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.Type: GrantFiled: February 4, 2016Date of Patent: October 2, 2018Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 9933411Abstract: A method of measuring whole-blood hemoglobin parameters includes providing a LED light source, guiding light having the spectral range from the LED light source along an optical path, providing a cuvette module with a sample receiving chamber, providing a pair of first and second optical diffusers disposed in the optical path where the cuvette module is disposed between the pair of first and second optical diffusers, guiding light from the cuvette module into an optical spectrometer, and processing an electrical signal from the spectrometer into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values of the sample of whole blood.Type: GrantFiled: February 4, 2016Date of Patent: April 3, 2018Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20170227397Abstract: An optical spectrometer for use in a COOx analyzer includes a spectrometer housing having an optical fiber housing end, a light-receiving input slit positioned adjacent the optical fiber housing end, a light dispersing element mounted to but spaced from the optical fiber housing end and positioned within an optical path along which light travels from the light-receiving input slit. The light dispersing element receives the light transmitted through the input slit and separates the light into a plurality of light beams, a light-array detector capable of receiving the plurality of light beams and converting the plurality of light beams into the electrical signal, an achromatic lens positioned in the optical path to direct the light from the input slit to the light dispersing element and to direct the plurality of light beams reflected from the light dispersing element onto the light-array detector, and a thermal-compensating means for the spectrometer housing.Type: ApplicationFiled: February 4, 2016Publication date: August 10, 2017Inventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20170227522Abstract: A method of measuring whole-blood hemoglobin parameters includes providing a LED light source, guiding light having the spectral range from the LED light source along an optical path, providing a cuvette module with a sample receiving chamber, providing a pair of first and second optical diffusers disposed in the optical path where the cuvette module is disposed between the pair of first and second optical diffusers, guiding light from the cuvette module into an optical spectrometer, and processing an electrical signal from the spectrometer into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values of the sample of whole blood.Type: ApplicationFiled: February 4, 2016Publication date: August 10, 2017Inventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20170227523Abstract: A compact optical spectrometer for measuring hemoglobin parameters in whole blood includes an enclosed spectrometer housing having a light entrance port, a light input slit disposed on one side of a circuit board substrate and positioned adjacent to and aligned with the light entrance port, a light-array detector disposed on the one side of the circuit board substrate adjacent the light input slit, a light dispersing element disposed downstream from the light input slit and an achromatic lens disposed between the light input slit and the light dispersing element to direct the light from the input slit to the light dispersing element and to direct the dispersed light from the light dispersing element to the light-array detector.Type: ApplicationFiled: February 4, 2016Publication date: August 10, 2017Inventors: Michael S. Cafferty, Scott P. Cionek
-
Publication number: 20170227521Abstract: A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.Type: ApplicationFiled: February 4, 2016Publication date: August 10, 2017Inventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 9638686Abstract: A method of measuring whole-blood hemoglobin parameters includes providing a LED light source, guiding light having the spectral range from the LED light source along an optical path, providing a cuvette module with a sample receiving chamber, providing a pair of first and second optical diffusers disposed in the optical path where the cuvette module is disposed between the pair of first and second optical diffusers, guiding light from the cuvette module into an optical spectrometer, and processing an electrical signal from the spectrometer into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values of the sample of whole blood.Type: GrantFiled: February 4, 2016Date of Patent: May 2, 2017Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek
-
Patent number: 9535053Abstract: A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.Type: GrantFiled: February 4, 2016Date of Patent: January 3, 2017Assignee: Nova Biomedical CorporationInventors: Michael S. Cafferty, Scott P. Cionek