Patents by Inventor Michael S. Lockard

Michael S. Lockard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7830228
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Microfabrica Inc.
    Inventors: Elliot R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20100276077
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Application
    Filed: November 3, 2009
    Publication date: November 4, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20100270165
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 28, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20100155253
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 24, 2010
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard, Christopher A. Bang
  • Publication number: 20100136851
    Abstract: Embodiments of the invention provide electrochemical fabrication processes that may be used for the fabrication of space transformers or the co-fabrication of microprobe arrays along with one or more space transformers.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 3, 2010
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Christopher A. Bang, Pavel B. Lembrikov
  • Publication number: 20100133952
    Abstract: Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFABĀ®).
    Type: Application
    Filed: December 14, 2009
    Publication date: June 3, 2010
    Inventors: Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, John D. Evans
  • Publication number: 20100133109
    Abstract: In some embodiments, multilayer structures are electrochemically fabricated from at least one structural material (e.g. nickel), at least one sacrificial material (e.g. copper), and at least one sealing material (e.g. solder). In some embodiments, the layered structure is made to have a desired configuration which is at least partially and immediately surrounded by sacrificial material which is in turn surrounded almost entirely by structural material. The surrounding structural material includes openings in the surface through which etchant can attack and remove trapped sacrificial material found within. Sealing material is located near the openings. After removal of the sacrificial material, the box is evacuated or filled with a desired gas or liquid. Thereafter, the sealing material is made to flow, seal the openings, and resolidify. In other embodiments, a post-layer formation lid or other enclosure completing structure is added.
    Type: Application
    Filed: November 23, 2009
    Publication date: June 3, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Vacit Arat, Christopher A. Bang, John C. Dixon
  • Publication number: 20100121307
    Abstract: Embodiments are directed to microneedle array devices for intradermal and/or transdermal interaction with the body of patient to provide therapeutic, diagnostic or preventative treatment wherein portions of the devices may be formed by multi-layer, multi-material electrochemical fabrication methods and wherein individual microneedles may include valve elements or other elements for controlling interaction (e.g. fluid flow). In some embodiments needles are retractable and extendable from a surface of the device. In some embodiments, interaction occurs automatically with movement across the skin of the patient while in other embodiments interaction is controlled by an operator (e.g. doctor, nurse, technician, or patient).
    Type: Application
    Filed: November 2, 2009
    Publication date: May 13, 2010
    Inventors: Michael S. Lockard, Vacit Arat, Adam L. Cohen, Kirk G. Nielsen
  • Publication number: 20100065432
    Abstract: Electrochemical fabrication processes and apparatus for producing multi-layer structures include operations or means for providing enhanced monitoring of build operations or detection of the results of build operations, operations or means for build problem recognition, operations or means for evaluation of corrective action options, operations or means for making corrective action decisions, and operations or means for executing actions based on those decisions.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Marvin M. Kilgo, III
  • Publication number: 20100065431
    Abstract: Electrochemical fabrication processes and apparatus for producing multi-layer structures include operations or means for providing enhanced monitoring of build operations or detection of the results of build operations, operations or means for build problem recognition, operations or means for evaluation of corrective action options, operations or means for making corrective action decisions, and operations or means for executing actions based on those decisions.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Marvin M. Kilgo, III
  • Publication number: 20100051466
    Abstract: Electrochemical fabrication processes and apparatus for producing multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers including operations for providing coatings of dielectric material that isolate at least portions of a first conductive material from (1) other portions of the first conductive material, (2) a second conductive material, or (3) another dielectric material, and wherein the thickness of the dielectric coatings are thin compared to the thicknesses of the layers used in forming the structures. In some preferred embodiments, portions of each individual layer are encapsulated by dielectric material while in other embodiments only boundaries between distinct regions of materials are isolated from one another by dielectric barriers.
    Type: Application
    Filed: July 21, 2009
    Publication date: March 4, 2010
    Applicant: Microfabrica Inc.
    Inventors: Dennis R. Smalley, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard
  • Publication number: 20100038253
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Application
    Filed: September 15, 2009
    Publication date: February 18, 2010
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Publication number: 20100010525
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Application
    Filed: June 23, 2009
    Publication date: January 14, 2010
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen
  • Publication number: 20100010492
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Application
    Filed: June 23, 2009
    Publication date: January 14, 2010
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Ming-Ting Wu, Gregory P. Schmitz, Eric C. Miller
  • Publication number: 20100006443
    Abstract: Embodiments of the invention are directed to the formation of beam-like structures using electrochemical fabrication techniques where the beam like structures have narrow regions and wider regions such that a beam of desired compliance is obtained. In some embodiments, narrower regions of the beam are thinner than a minimum feature size but are formable as a result of the thicker regions. In some embodiments the beam-like structures are formed from a plurality of adhered layers.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 14, 2010
    Applicant: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Christopher A. Bang, Marvin M. Kilgo, III
  • Patent number: 7640651
    Abstract: Embodiments of the invention provide fabrication processes for the co-fabrication of microprobe arrays along with one or more space transformers wherein the fabrication processes include the forming and adhering of a plurality of layers to previously formed layers and wherein at least a portion of the plurality of layers are formed from at least one structural material and at least one sacrificial material that is at least in part released from the plurality of layers after formation and wherein the space transformer includes a plurality of interconnect elements that connect one side to the array of probes that has a first spacing to another side that has a second spacing where the second spacing is greater than the first spacing. In some embodiments, the fabrication process includes a plurality of electrodeposition operations.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: January 5, 2010
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Christopher A. Bang, Pavel B. Lembrikov
  • Publication number: 20090320990
    Abstract: Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: April 28, 2009
    Publication date: December 31, 2009
    Inventors: Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20090301893
    Abstract: Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Inventors: Adam L. Cohen, Jill R. Thomassian, Michael S. Lockard, Marvin M. Kilgo, III, Uri Frodis, Dennis R. Smalley
  • Patent number: 7611616
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: November 3, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 7588674
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 15, 2009
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard