Patents by Inventor Michael S. Salib

Michael S. Salib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7343057
    Abstract: A method of operating an optical isolator having first and second optical splitter-combiners disposed within a semiconductor die. The optical splitter-combiners are coupled together into an interferometer configuration by first and second waveguide sections also disposed in the semiconductor die. A non-reciprocal optical phase shift element is disposed within the semiconductor die.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: March 11, 2008
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Dmitri E. Nikonov
  • Patent number: 7310182
    Abstract: An apparatus and method for modulating an optical beam by modulating a photonic band gap of a photonic crystal lattice. In one embodiment, an apparatus according to embodiments of the present invention includes a photonic crystal lattice in first semiconductor material. The first semiconductor material has a plurality of holes defined in the first semiconductor material. The plurality of holes are periodically arranged in the first semiconductor material with a hole pitch and a hole radius that define the photonic crystal lattice. The apparatus also includes second semiconductor material regions disposed proximate to and insulated from respective inside surfaces of the plurality of holes defined in the first semiconductor material and charge modulated regions, which are to be modulated in the second semiconductor material regions. An optical beam is to be directed through the photonic crystal lattice and is to be modulated in response to a modulated effective photonic band gap of the photonic crystal lattice.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 18, 2007
    Assignee: Intel Corporation
    Inventor: Michael S. Salib
  • Patent number: 7260281
    Abstract: An optical isolator includes first and second optical splitter-combiners disposed within a semiconductor die. The optical splitter-combiners are coupled together into an interferometer configuration by first and second waveguide sections also disposed in the semiconductor die. A non-reciprocal optical phase shift element is disposed within the semiconductor die and includes the first waveguide section passing through the non-reciprocal optical phase shift element. The optical isolator is configured such that forward propagating waves are constructively recombined by the second optical splitter-combiner while reverse propagating wave are destructively recombined by the first optical splitter-combiner.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: August 21, 2007
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Dmitri E. Nikonov
  • Patent number: 7260282
    Abstract: An integratable optical isolator includes a polarizer, a non-reciprocal rotator, and a reciprocal rotator. The polarizer includes first and second ports. The polarizer is configured to receive a forward propagating wave at the first port and to output a polarized forward propagating wave having a first plane of polarization at the second port. The non-reciprocal rotator is coupled to receive the polarized forward propagating wave from the second port of the polarizer. The non-reciprocal rotator rotates the polarized forward propagating wave from the first plane of polarization to a second plane of polarization. The reciprocal rotator is coupled to the non-reciprocal rotator to receive the polarized forward propagating wave. The reciprocal rotator rotates the polarized forward propagating wave from the second plane of polarization back to the first plane of polarization.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: August 21, 2007
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Dmitri E. Nikonov
  • Patent number: 7141843
    Abstract: Embodiments of the invention provide a polarization rotator. The polarization rotator may be integrated with a waveguide on a substrate, and may include a ferromagnetic semiconductor layer on the substrate, a first doped layer on the ferromagnetic semiconductor layer, and a second doped layer on the first doped layer.
    Type: Grant
    Filed: October 11, 2004
    Date of Patent: November 28, 2006
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Dmitri Nikonov
  • Patent number: 7043124
    Abstract: A method to form a taper in a semiconductor layer. In one embodiment, the semiconductor layer is formed on a cladding layer. A mask layer is formed on the semiconductor layer. The mask layer is patterned and etched to form at least an angled region and a thick region. An ion implantation process is performed so that the portion under the angled region is implanted to have an interface or surface that is angled relative to the surface of the cladding layer. This angled surface forms part of the vertical taper. The implanted region does not contact the cladding layer, leaving an unimplanted portion to serve as a waveguide. The portion under the thick region is not implanted, forming a coupling end of the taper.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 9, 2006
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Michael T. Morse
  • Patent number: 6989284
    Abstract: A method to form a taper in a semiconductor layer. In one embodiment, the semiconductor layer is formed on a cladding layer. A mask layer is formed on the semiconductor layer. The mask layer is patterned and etched to form at least an angled region and a thick region. An ion implantation process is performed so that the portion under the angled region is implanted to have an interface or surface that is angled relative to the surface of the cladding layer. This angled surface forms part of the vertical taper. The implanted region does not contact the cladding layer, leaving an unimplanted portion to serve as a waveguide. The portion under the thick region is not implanted, forming a coupling end of the taper.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 24, 2006
    Assignee: Intel Corporation
    Inventors: Michael S. Salib, Michael T. Morse
  • Patent number: 6876783
    Abstract: An optical device including strained and non-strained regions along an optical medium. In one aspect of the present invention, strain-inducing material disposed proximate to the optical medium induces one or more perturbations of a refractive index along the optical medium to selectively reflect an optical beam directed through the optical medium having a first center wavelength back out a first end of an optical path as remaining wavelengths of light are propagated through a second end. In another embodiment, an optical device may include a strained region disposed in a non-strained region so that one or more perturbations of the refractive index compensates for birefringence of an optical beam directed through the optical medium.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: April 5, 2005
    Assignee: Intel Corporation
    Inventor: Michael S. Salib
  • Patent number: 6813432
    Abstract: A method to form a waveguide taper includes forming a core layer on a cladding layer. A protective layer with an opening is formed on the core layer, the opening exposing a portion of the core layer. A CMP process is performed so that dishing occurs in the exposed portion, forming a depression with a sloped sidewall. In one embodiment, the core layer is then patterned so that a portion of the core layer is removed to about the depth of the depression. This removed portion includes a part of the core layer containing the depression. The resulting structure includes an unetched sloped surface that transitions to a substantially planar etched surface. The core layer is patterned and etched again to form the waveguide, with the sloped surface forming part of the taper.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: November 2, 2004
    Assignee: Intel Corporation
    Inventor: Michael S. Salib
  • Publication number: 20030223696
    Abstract: A method to form a taper in a semiconductor layer. In one embodiment, the semiconductor layer is formed on a cladding layer. A mask layer is formed on the semiconductor layer. The mask layer is patterned and etched to form at least an angled region and a thick region. An ion implantation process is performed so that the portion under the angled region is implanted to have an interface or surface that is angled relative to the surface of the cladding layer. This angled surface forms part of the vertical taper. The implanted region does not contact the cladding layer, leaving an unimplanted portion to serve as a waveguide. The portion under the thick region is not implanted, forming a coupling end of the taper.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Inventors: Michael S. Salib, Michael T. Morse
  • Publication number: 20030223719
    Abstract: A method to form a waveguide taper includes forming a core layer on a cladding layer. A protective layer with an opening is formed on the core layer, the opening exposing a portion of the core layer. A CMP process is performed so that dishing occurs in the exposed portion, forming a depression with a sloped sidewall. In one embodiment, the core layer is then patterned so that a portion of the core layer is removed to about the depth of the depression. This removed portion includes a part of the core layer containing the depression. The resulting structure includes an unetched sloped surface that transitions to a substantially planar etched surface. The core layer is patterned and etched again to form the waveguide, with the sloped surface forming part of the taper.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Inventor: Michael S. Salib
  • Publication number: 20030215184
    Abstract: An optical device including strained and non-strained regions along an optical medium. In one aspect of the present invention, strain-inducing material disposed proximate to the optical medium induces one or more perturbations of a refractive index along the optical medium to selectively reflect an optical beam directed through the optical medium having a first center wavelength back out a first end of an optical path as remaining wavelengths of light are propagated through a second end. In another embodiment, an optical device may include a strained region disposed in a non-strained region so that one or more perturbations of the refractive index compensates for birefringence of an optical beam directed through the optical medium.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 20, 2003
    Inventor: Michael S. Salib