Patents by Inventor Michael S. Wire

Michael S. Wire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6678540
    Abstract: A superconductor on-chip microstrip line (2, 4) to off-chip microstrip line (7) transition of low characteristic impedance (15, 20, 22) is realized that obtains a bandwidth of 200 GHz for MCM application while employing solder bump (15, 17) technology to connect the chips (3, 5) to the off-chip microstrip and substrate (6). Circular openings (20, 22) through the respective ground plane layers (10 & 16) of the off-chip and on-chip microstrips are provided in positions respectively underlying and overlying the solder bump (15) for the signal. The openings may be sized to provide a desired ratio of inductance to capacitance, the larger the size, the greater the ratio value. This technique may be used to match characteristic impedance to give broad bandwidth low impedance interconnections needed for direct SFQ chip-to-chip communication on a passive MCM.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: January 13, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Michael S. Wire, Quentin P. Herr
  • Publication number: 20030040440
    Abstract: A superconductor on-chip microstrip line (2, 4) to off-chip microstrip line (7) transition of low characteristic impedance (15, 20, 22) is realized that obtains a bandwidth of 200 GHz for MCM application while employing solder bump (15, 17) technology to connect the chips (3, 5) to the off-chip microstrip and substrate (6). Circular openings (20, 22) through the respective ground plane layers (10 & 16) of the off-chip and on-chip microstrips are provided in positions respectively underlying and overlying the solder bump (15) for the signal. The openings may be sized to provide a desired ratio of inductance to capacitance, the larger the size, the greater the ratio value. This technique may be used to match characteristic impedance to give broad bandwidth low impedance interconnections needed for direct SFQ chip-to-chip communication on a passive MCM.
    Type: Application
    Filed: August 22, 2001
    Publication date: February 27, 2003
    Inventors: Michael S. Wire, Quentin P. Herr
  • Patent number: 5831489
    Abstract: Operating high frequency cryogenic superconductor devices requires an enclosure that permits application of wide band RF signals from an external source to the superconductor device while maintaining the device at cryogenic temperatures in an essentially magnetic field free environment. A magnetic field shielding enclosure is formed of inner (5, 7) and outer (9, 11) mumetal containers, one larger than the other in size. Each of those containers is formed of two open-ended container like pieces that are nested together with overlapping side walls to define two generally closed regions, the first containing the cryogenic superconductor device (1) and the second (9, 11) containing the first container (5, 7). A shielded high bandwidth transmission line (12), sufficiently compliant physically, is snaked through slight clearance spaces between the pieces of each of those containers to the superconductor device.
    Type: Grant
    Filed: September 19, 1996
    Date of Patent: November 3, 1998
    Assignee: TRW Inc.
    Inventor: Michael S. Wire