Patents by Inventor Michael Salciccioli

Michael Salciccioli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190185394
    Abstract: A process to separate paraxylene from a mixture of paraxylene, metaxylene, orthoxylene, and ethylbenzene in a commercial simulated moving bed apparatus in a reduced number of beds is provided, allowing an additional separation to be conducted in the remaining beds. This additional separation may separate another xylene isomer, ethylbenzene, or a non-aromatic C8+ hydrocarbon from the raffinate stream produced by the first separation. A PowerFeed process is used to recover paraxylene in a first adsorption zone containing 8-16 beds of a conventional 24-bed simulated moving bed adsorption apparatus, and then a second separation may be conducted in a second adsorption zone containing the remaining beds.
    Type: Application
    Filed: May 17, 2017
    Publication date: June 20, 2019
    Inventors: Michael W. WEBER, Yoshiaki KAWAJIRI, Michael SALCICCIOLI, John R. PORTER, Gaurav AGRAWAL, Dana L. PILLIOD, Siwei GUO, Jason BENTLEY
  • Publication number: 20190184311
    Abstract: The process involves the use of two rotary valves to implement Varicol operation of a simulated moving bed apparatus to separate a product from at least one multicomponent feed. In a particular embodiment, paraxylene is separated from a mixture of C8 aromatic hydrocarbons. The use of the Varicol process further enhances the separation of the desired product and provides flexibility with a simulated moving bed apparatus using dual rotary valves.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 20, 2019
    Inventors: Michael W. WEBER, Siwei GUO, Yoshiaki KAWAJIRI, Jason BENTLEY, Gaurav AGRAWAL, Michael SALCICCIOLI, Dana L. PILLIOD
  • Patent number: 10322991
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 18, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Publication number: 20190161429
    Abstract: This disclosure relates to methods for production of aromatic esters useful as plasticizers without using esterification catalyst, to the aromatic esters, and to polymer compositions containing the aromatic esters. It also relates to producing aromatic polyesters without using esterification catalyst. The aromatic esters and polyesters can be produced catalyst-free by esterifying carboxylic acids with alcohol(s) at high temperature and high pressure, namely at a temperature from 100° C. to 350° C. and a pressure ?100 psig, preferably ?600 psig. The aromatic esters and polyesters can also be produced by esterifying without esterification catalyst carboxylic acids with methyl or ethyl alcohol, separating the resulting methyl or ethyl esters from the carboxylic acid and any byproduct impurities, and then transesterifying with or without esterification catalyst the methyl or ethyl esters with alcohols and/or diols.
    Type: Application
    Filed: May 18, 2017
    Publication date: May 30, 2019
    Inventors: Mika L. Shiramizu, Michael Salciccioli, Neeraj Sangar, Ting Chen
  • Patent number: 10287230
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 14, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Publication number: 20190002367
    Abstract: A process for producing naphthalene or methylnaphthalenes from an alkane-containing stream. In an embodiment, the produce includes providing an alkane-containing feed stream to a reactor, and contacting the ethane-containing stream with an aromatization catalyst within the reactor. The aromatization catalyst comprises molecular sieve, and a dehydrogenation component. In addition, the process includes producing a reactor effluent stream from the reactor, and separating a product stream from the reactor effluent stream. The product stream comprises at least one or both of naphthalene and methylnaphthalene.
    Type: Application
    Filed: May 8, 2018
    Publication date: January 3, 2019
    Inventors: Michael Salciccioli, Alan A. Galuska, Tan-Jen Chen, Catherine M. Dorsi, Mayank Shekhar
  • Publication number: 20180370874
    Abstract: Systems and methods are provided for forming para-xylene from aromatics-containing streams having reduced or minimized amounts of C2+ side chains. Reduced or minimized amounts of C2+ side chains can provide benefits for improving and/or allowing modification of transalkylation conditions, xylene isomerization conditions, or a combination thereof. Such aromatics-containing streams can be formed, for example, by conversion of methyl halide, methanol, syngas, and/or dimethyl ether to aromatics by an aromatic conversion process. The methyl halide, methanol, syngas, and/or dimethyl ether can be formed by conversion of methane.
    Type: Application
    Filed: December 5, 2016
    Publication date: December 27, 2018
    Inventors: Michael Salciccioli, Hari Nair, Glenn C. Wood, Nikolaos Soultanidis
  • Publication number: 20180258011
    Abstract: A process for producing phenylstyrene comprises contacting benzene with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation product comprising cyclohexylbenzene. At least part of the cyclohexylbenzene is then contacted with ethylbenzene in the presence of a transalkylation catalyst under conditions effective to produce a transalkylation product comprising cyclohexylethylbenzene and/or with ethylene in the presence of an alkylation catalyst under conditions effective to produce an alkylation product comprising cyclohexylethylbenzene. At least part of the cyclohexylethylbenzene is then contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation product comprising phenylstyrene.
    Type: Application
    Filed: October 14, 2016
    Publication date: September 13, 2018
    Inventors: Michael Salciccioli, Alan A. Galuska, Ranjita Ghose, Dorin Levin, Mosha H. Zhao
  • Patent number: 10059641
    Abstract: Systems and methods are provided for converting alkane while generating improved yields of desirable aromatics and/or improved selectivity for forming desired aromatics, such as para-xylene (p-xylene). Aromatics generated during the aromatic formation process can be alkylated to form xylenes with improved yield and/or improved selectivity.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Glenn C. Wood
  • Patent number: 10017433
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 10, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20180179138
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 28, 2018
    Inventors: Michael P. LANCI, Joshua W. ALLEN, Jarid M. METZ, Victor DeFLORIO, Jihad M. DAKKA, Bryan A. PATEL, Michael SALCICCIOLI, Michael W. WEBER, Stephen ZUSHMA
  • Publication number: 20180179141
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Application
    Filed: December 1, 2017
    Publication date: June 28, 2018
    Inventors: Michael P. LANCI, Joshua W. ALLEN, Jarid M. METZ, Victor DeFLORIO, Jihad M. DAKKA, Bryan A. PATEL, Michael SALCICCIOLI, Michael W. WEBER, Stephen ZUSHMA
  • Publication number: 20180050971
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Application
    Filed: December 16, 2015
    Publication date: February 22, 2018
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Patent number: 9896393
    Abstract: In a process for producing dialkylbiphenyl compounds, a feed comprising substituted cyclohexylbenzene isomers having the formula (I): wherein each of R1 and R2 is an alkyl group and wherein the feed comprises m % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the feed; is transalkylated with a compound of formula (II): to produce a transalkylation product comprising substituted cyclohexylbenzene isomers having the formula (I) and including n % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the transalkylation product, wherein n<m. At least part of the transalkylation product is then dehydrogenated under conditions effective to convert at least part of the substituted cyclohexylbenzene isomers in the transalkylation product to dialkylbiphenyl compounds.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: February 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Tan-Jen Chen, Neeraj Sangar, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20180002252
    Abstract: Disclosed is a process for recovering paraxylene in which a first simulated moving bed adsorption unit is used to produce two extract streams—one rich in paraxylene and a paraxylene-rich extract stream that is lean in ethylbenzene and an ethylbenzene-rich extract stream that is lean in paraxylene- and a paraxylene-depleted raffinate stream. A significant amount of the ethylbenzene is removed in the ethylbenzene-rich extract stream (at least enough to limit buildup in the isomerization loop), so the paraxylene-depleted raffinate stream may be isomerized in the liquid phase. Avoiding vapor phase isomerization saves energy and capital, as liquid phase isomerization requires less energy and capital than the vapor phase isomerization process due to the requirement of vaporizing the paraxylene-depleted stream and the use of hydrogen, which requires an energy and capital intensive hydrogen recycle loop.
    Type: Application
    Filed: May 19, 2017
    Publication date: January 4, 2018
    Inventors: Michael Salciccioli, Gaurav Agrawal, Michael W. Weber, Dana L. Pilliod, Catherine M. Dorsi
  • Patent number: 9856186
    Abstract: A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X? dialkylbiphenyl isomer (where X? is 2?, 3? and/or 4?), into at least one different isomer, 3,3?, 3,4? and/or 4,4? dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: January 2, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Jihad M. Dakka, Emiel de Smit, Neeraj Sangar, Scott J. Weigel, Sumathy Raman, Terry E. Helton, Lorenzo C. DeCaul, Christine N. Elia, Chuansheng Bai, Ranjita Ghose
  • Patent number: 9850186
    Abstract: A process for producing paraxylene is provided. The process includes separating a first mixture of C8 aromatic hydrocarbons in a simulated moving bed apparatus using a desorbent to produce (i) an extract comprising ?50.0 wt % of the paraxylene in the first mixture; (ii) a desorbent-rich raffinate comprising ?75 wt % of the desorbent withdrawn, and (iii) an desorbent-lean raffinate comprising ?25 wt % of the desorbent withdrawn in the desorbent-rich and desorbent-lean raffinates. The desorbent-lean raffinate can then, without an intervening separation step, be passed to a refinery process or a vapor phase isomerization reaction to produce an effluent comprising paraxylene in a greater concentration than the desorbent-lean raffinate. The desorbent-rich raffinate can be passed to a liquid phase isomerization reaction to produce an effluent comprising paraxylene in a greater concentration than the desorbent-rich raffinate.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 26, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gaurav Agrawal, Michael W. Weber, Michael Salciccioli, John R. Porter, Dana L. Pilliod, Timothy P. Bender
  • Publication number: 20170342005
    Abstract: The invention relates to processes for oxygenate synthesis and homologation, to equipment and materials useful in such processes, and to the use of such oxygenate for producing olefin and polyolefin.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 30, 2017
    Inventors: Monica D. Lotz, Paul F. Keusenkothen, Michael Salciccioli
  • Patent number: 9809519
    Abstract: The invention relates to processes for oxygenate synthesis and homologation, to equipment and materials useful in such processes, and to the use of such oxygenate for producing olefin and polyolefin.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: November 7, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Monica D. Lotz, Paul F. Keusenkothen, Michael Salciccioli
  • Patent number: 9758447
    Abstract: In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: September 12, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Gregory J. De Martin, Michael Salciccioli, Neeraj Sangar, Aaron B. Pavlish, Ali A. Kheir, Gary D. Mohr