Patents by Inventor Michael Sayers

Michael Sayers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7653488
    Abstract: Predicting sand production in a wellbore. A first set of characteristics is determined for a formation in the wellbore, wherein determining uses a plastic model of the formation, and wherein the first set of characteristics comprises a yield surface, a failure surface, a stress total strain, an elastic strain, and a plastic-strain relationship. A relationship among a second set of characteristics of the wellbore is determined using an effective stress model, wherein the second set comprises a drawdown pressure, a production rate, pore pressure, a temperature and a viscosity of a fluid in the wellbore, a fluid flow pressure in the wellbore, a drag force of fluid flow in the wellbore, and a type of fluid flow in the wellbore. A critical total strain is determined for the formation using the first set of characteristics and the relationship. The critical total strain is calibrated using a thick wall test.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Ali I. Mese, Colin Michael Sayers, Robert Andrew Holicek, Dan Shan, Donald W. Lee, Jorge Aurelio Santa Cruz Pastor
  • Publication number: 20090225628
    Abstract: In general, in one aspect, the invention relates to a method for determining properties of a subterranean formation.
    Type: Application
    Filed: February 17, 2009
    Publication date: September 10, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Colin Michael Sayers
  • Publication number: 20090164129
    Abstract: The invention relates to a method for determining maximum horizontal stress in an earth formation. The method includes obtaining fast shear wave velocities (Vs1) and slow shear wave velocities (Vs2) for various depths in the earth formation, calculating shear wave anisotropy (Adata) using Vs1 and Vs2, obtaining vertical stress (Sv) and minimum horizontal stress (Sh) for the formation, representing maximum horizontal stress (SH) using a parameterized function having at least one parameter and using Sh and Sv as input, determining a value of the at least one parameter by minimizing a cost function that represents a measure of difference between Adata and Apred for the various depths and Apred is predicted shear wave anisotropy determined using Sv, Sh, and SH, calculating SH using the parameterized function and the value of the at least one parameter, and storing SH in relation to the earth formation.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 25, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: COLIN MICHAEL SAYERS
  • Patent number: 7498043
    Abstract: The invention is a silicon substituted oxyapatite compound (Si—OAp) for use as a synthetic bone biomaterial either used alone or in biomaterial compositions. The silicon substituted oxyapatite compound has the formula Ca5(PO4)3-x(SiO4)xO(1-x)/2, where 0<x<1.0.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 3, 2009
    Assignee: Warsaw orthopedic, inc.
    Inventors: Michael Sayer, Joel Reid, Timothy J. N. Smith, Jason Hendry
  • Publication number: 20090055098
    Abstract: Predicting sand production in a wellbore. A first set of characteristics is determined for a formation in the wellbore, wherein determining uses a plastic model of the formation, and wherein the first set of characteristics comprises a yield surface, a failure surface, a stress total strain, an elastic strain, and a plastic-strain relationship. A relationship among a second set of characteristics of the wellbore is determined using an effective stress model, wherein the second set comprises a drawdown pressure, a production rate, pore pressure, a temperature and a viscosity of a fluid in the wellbore, a fluid flow pressure in the wellbore, a drag force of fluid flow in the wellbore, and a type of fluid flow in the wellbore. A critical total strain is determined for the formation using the first set of characteristics and the relationship. The critical total strain is calibrated using a thick wall test.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Inventors: Ali I. Mese, Colin Michael Sayers, Robert Andrew Holicek, Dan Shan, Donald W. Lee, Jorge Aurelio Santa Cruz Pastor
  • Publication number: 20090030089
    Abstract: The invention is a silicon substituted oxyapatite compound (Si—OAp) for use as a synthetic bone biomaterial either used alone or in biomaterial compositions. The silicon substituted oxyapatite compound has the formula Ca5(PO4)3-x(SiO4)xO(1-x)/2, where 0<x<1.0.
    Type: Application
    Filed: October 3, 2008
    Publication date: January 29, 2009
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Michael Sayer, Joel Reid, Timothy J.N. Smith, Jason Hendry
  • Publication number: 20080033704
    Abstract: A method for performing an oilfield operation at a wellsite having a drilling rig configured to advance a drilling tool into a subsurface formation. The method includes generating a borehole temperature model for an area of interest using water depth information and a vertical stress model, generating a formation temperature model using the borehole temperature model, generating a mud-weight pressure model using the formation temperature model and pressure coefficients, generating a formation pore pressure model using the mud-weight pressure model, and adjusting the oilfield operation based on the formation pore pressure model.
    Type: Application
    Filed: August 6, 2007
    Publication date: February 7, 2008
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Colin Michael Sayers, Lennert David den Boer
  • Publication number: 20070184035
    Abstract: This invention relates to a bioactive artificial sintered composition for providing a morphology capable of consistently supporting bone cell activity thereon. The composition comprises stabilized calcium phosphate phases developed by the conversion of a hydroxyapatite substance in the presence of stabilizing entities at sintering temperatures into insolubilized and stabilized tricalcium phosphate. The present invention has numerous applications in medical diagnostics for the assessment of abnormal bone cell activity as well as for medical therapeutics, including bone and dental tissue replacement and repair as well as for ex vivo bone graft tissue engineering.
    Type: Application
    Filed: April 20, 2007
    Publication date: August 9, 2007
    Inventors: Sydney Pugh, Timothy Smith, Michael Sayer, Sarah Langstaff
  • Publication number: 20050244449
    Abstract: The invention is a silicon substituted oxyapatite compound (Si—OAp) for use as a synthetic bone biomaterial either used alone or in biomaterial compositions. The silicon substituted oxyapatite compound has the formula Ca5(PO4)3-x(SiO4)xO(1-x)/2, where 0<x<1.0.
    Type: Application
    Filed: March 24, 2005
    Publication date: November 3, 2005
    Inventors: Michael Sayer, Joel Reid, Timothy Smith, Jason Hendry
  • Patent number: 6846493
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 ?. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: January 25, 2005
    Assignee: Millenium Biologix Inc.
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Patent number: 6714480
    Abstract: A method for determining properties of a transverse isotropic region of earth formations traversed by a wellbore having substantially vertical and deviated sections therethrough, including measuring sonic velocity properties in formations surrounding the substantially vertical section of the wellbore; measuring sonic velocity properties in formations surrounding the deviated section of the wellbore; and determining, from the measured velocities, all of the transverse isotropic elastic constants of the region.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: March 30, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Colin Michael Sayers, Takeshi Endo
  • Publication number: 20030167835
    Abstract: A method for determining properties of a transverse isotropic region of earth formations traversed by a wellbore having substantially vertical and deviated sections therethrough, including measuring sonic velocity properties in formations surrounding the substantially vertical section of the wellbore; measuring sonic velocity properties in formations surrounding the deviated section of the wellbore; and determining, from the measured velocities, all of the transverse isotropic elastic constants of the region.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Colin Michael Sayers, Takeshi Endo
  • Patent number: 6585992
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: July 1, 2003
    Assignee: Millenium Biologix, Inc.
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Publication number: 20030003160
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Application
    Filed: May 10, 2002
    Publication date: January 2, 2003
    Inventors: Sydney M. Pugh, Timothy J.N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Publication number: 20020042657
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Application
    Filed: October 4, 2001
    Publication date: April 11, 2002
    Applicant: Millenium Biologix, Inc.
    Inventors: Sydney M. Pugh, Timothy J.N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Patent number: 6337032
    Abstract: A sol-gel precursor mixture for forming a perovskite ferroelectric material and a method for forming a ferroelectric material are provided. The precursor solution comprises a sol-gel formulation of a mixture of an inorganic salt of at least one metal, and metal-organic compounds of other constituent metals in a suitable pH controlled aqueous solvent mixture to form a stable, clear sol-gel mixture. The precursor solution and method provides for formation of thin layers of other ferroelectric dielectrics and piezoelectric materials, particularly lead containing materials, for application including non-volatile DRAMs, optoelectronic devices relying on non-linear optical properties, and piezoelectric devices, and is compatible with processing for submicron device structures for bipolar, CMOS or bipolar CMOS circuits.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: January 8, 2002
    Assignees: Nortel Networks Limited, Queen's University
    Inventors: Vasanta Chivukula, Michael Sayer, David R. McDonald, Ismail T. Emesh
  • Patent number: 6323146
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: November 27, 2001
    Assignee: Millenium Biologix, Inc.
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Patent number: 6066581
    Abstract: A sol-gel precursor mixture for forming a perovskite ferroelectric material and a method for forming a ferroelectric material are provided. The precursor solution comprises a sol-gel formulation of a mixture of an inorganic salt of at least one metal, and metal-organic compounds of other constituent metals in a suitable pH controlled aqueous solvent mixture to form a stable, clear sol-gel mixture. The precursor solution and method provides for formation of thin layers of other ferroelectric dielectrics and piezoelectric materials, particularly lead containing materials, for application including non-volatile DRAMs, optoelectronic devices relying on non-linear optical properties, and piezoelectric devices, and is compatible with processing for submicron device structures for bipolar, CMOS or bipolar CMOS circuits.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: May 23, 2000
    Assignees: Nortel Networks Corporation, Queen's University
    Inventors: Vasanta Chivukula, Michael Sayer, David R. McDonald, Ismail T. Emesh
  • Patent number: RE41251
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 ?. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: April 20, 2010
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah D. Langstaff
  • Patent number: RE36573
    Abstract: A method for producing thick ceramic films of greater than 10 .mu.m on selected substrates is described. Conventional sol gel solutions are loaded with up to about 90% by weight of finely divided ceramic particles and mixed. The resulting slurry or paint can be either spun or dip coated or sprayed or painted onto a planar or other substrate, fired to remove the organic materials and to develop a microcrystalline structure. The fired film may then be heated. Composite films are also contemplated.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: February 15, 2000
    Assignee: Queen's University at Kingston
    Inventors: David A. Barrow, T. Edward Petroff, Michael Sayer