Patents by Inventor Michael Schoor

Michael Schoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200348391
    Abstract: A radar sensor system for transmitting and receiving radar waves. The system includes a first sub-sensor having a first antenna and a first antenna control for operating the first antenna, and a second sub-sensor including a second antenna and a second antenna control for operating the second antenna. The system further includes a frequency-generating device having a clock pulse generator for generating a usable frequency and having a control unit for actuating and controlling the first antenna control, the second antenna control and the frequency-generating device, the frequency-generating device having a first clock pulse generator and a second clock pulse generator, the first clock pulse generator and the second clock pulse generator being able to be connected via at least two multiplexers to the first antenna control and the second antenna control for the supply of a usable frequency in each case.
    Type: Application
    Filed: November 8, 2018
    Publication date: November 5, 2020
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Publication number: 20200348394
    Abstract: A radar sensor system having a defined number of HF components, each HF component having at least one antenna for transmitting and/or receiving radar waves and at least one antenna control for operating the at least one antenna, and a synchronization network to which all HF components are functionally connected and via which an HF signal is able to be provided to all HF components. At least two HF components have a respective self-supply device for feeding back a defined share of power of the HF signal able to be fed into the synchronization network. The HF signal for all HF components being able to be generated by a defined HF component at a defined instant, the radar sensor system being able to be functionally subdivided into at least two sub-sensor systems.
    Type: Application
    Filed: January 10, 2019
    Publication date: November 5, 2020
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Patent number: 10823819
    Abstract: A radar system includes an antenna array for sending and receiving electromagnetic radiation, the array including N transmitting antennas and M receiving antennas, objects being detectable within the detection area of the antennas according to the MIMO principle using the antennas. The transmitting antennas transmit signals that are orthogonal to one another during a transmission cycle. N-n of the transmitting antennas are situated horizontally next to one another and n of the transmitting antennas are situated in a horizontally offset manner at an identical offset from respective ones of the N-n transmitting antennas. M-m of the receiving antennas are situated horizontally next to one another and m of the receiving antennas are situated vertically offset from the M-m receiving antennas.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: November 3, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Benedikt Loesch, Michael Schoor
  • Publication number: 20200333435
    Abstract: A radar sensor head for a radar system. The radar sensor head includes at least one transmitting antenna for generating and at least one receiving antenna for receiving radar waves; a preprocessing unit for defined preprocessing of received data; an interface for connecting the radar sensor head to a data line; and a calibration data unit for at least partially calibrating the transmitting antenna and/or the receiving antenna, calibration data for the transmitting antenna and the receiving antenna being stored using the calibration data unit.
    Type: Application
    Filed: January 17, 2019
    Publication date: October 22, 2020
    Inventors: Marcel Mayer, Michael Schoor
  • Publication number: 20200278436
    Abstract: A radar system for a vehicle. The radar system has at least one central control unit for transmitting data and for processing received data, at least one radar sensor head, which is set apart from the central control unit and has at least one transmitting antenna for generating and at least one receiving antenna for receiving radar waves, and having at least one data line between the at least one central control unit and the at least one radar sensor head, with the at least one central control unit having a clock pulse generator for generating a reference frequency and the reference frequency being transmittable via the at least one data line to the at least one radar sensor head.
    Type: Application
    Filed: November 8, 2018
    Publication date: September 3, 2020
    Inventors: Marcel Mayer, Michael Schoor
  • Publication number: 20200271751
    Abstract: A device for emitting and receiving electromagnetic radiation, in which different antennas are used for the emitting and receiving, a first antenna or first group being used for the transmission in a first polarization form, a second antenna or second group being used for the transmission in a second polarization form, and a third antenna or third group being used for receiving the reflected electromagnetic radiation that was emitted by the first antenna or first group and by the second antenna or second group. The device may be fixed in place on a motor vehicle and used for object detection within the framework of a distance and speed control or a collision avoidance, and the polarimetric information obtained from the different receiving levels during the propagation of the two differently polarized electromagnetic waves via different propagation paths is able to be used for ascertaining a weather-related road condition.
    Type: Application
    Filed: October 11, 2018
    Publication date: August 27, 2020
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Patent number: 10712442
    Abstract: An integrated radio-frequency circuit for a radar sensor, having a clock input that is designed to receive a clock signal produced externally to the integrated radio-frequency circuit, having a local oscillator that is designed to produce a local radio-frequency signal, having a radio-frequency input that is designed to receive an external radio-frequency signal produced externally to the integrated radio-frequency circuit, and having a changeover switch that is coupled to the local oscillator and to the radio-frequency input and is designed to change over between the local radio-frequency signal and the external radio-frequency signal for the production of a radar signal. In addition, a corresponding radar sensor and a corresponding operating method, are also described.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 14, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Steinbuch, Goetz Kuehnle, Matthias Steinhauer, Michael Schoor
  • Publication number: 20200217926
    Abstract: A method and an apparatus for reducing the influence of interference in the evaluation of at least one received signal of a radar sensor, in particular of a radar sensor installed in a vehicle, is described. In predetermined operating situations, predetermined transmitted signals are emitted and reflected partial signals are received, and the signals received for the predetermined operating situations are stored in order to determine an interference spectrum and the influence of interference is reduced by taking the interference spectrum into consideration in the context of signal evaluation.
    Type: Application
    Filed: September 4, 2018
    Publication date: July 9, 2020
    Inventors: Andreas Pietsch, Klaus Baur, Marcel Mayer, Michael Schoor
  • Publication number: 20200191906
    Abstract: FMCW radar sensor including multiple high-frequency modules, which are synchronized with one another by a synchronization signal. At least one includes a transmitting part for generating a frequency-modulated transmit signal. At least two high-frequency modules, physically separated from one another, each include a receiving part for receiving a radar echo, each receiving part being assigned a mixer, which generates an intermediate frequency signal by mixing the received signal with a portion of the transmit signal, and an evaluation unit. The evaluation unit is designed to record the intermediate frequency signal over a measuring period as a function of time, and to subject the time signal thus obtained to a Fourier transform. At least one of the evaluation units is designed to window the time signal before the Fourier transform using a complex-valued window function to compensate for a propagation time difference of the synchronization signal between the receiving parts.
    Type: Application
    Filed: July 12, 2018
    Publication date: June 18, 2020
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Patent number: 10684364
    Abstract: A method for operating a radar device, including ascertaining a matrix with time signals of reflected radar radiation, ascertaining elements of a distance-velocity-power matrix of a radar target from the time signals, carrying out a first discrete one-dimensional Fourier transform for the elements of the distance-velocity-power matrix in a first dimension, and carrying out a second discrete one-dimensional Fourier transform for the elements of the distance-velocity-power matrix in a second dimension in such a way that the second discrete one-dimensional Fourier transform is carried out for each second element of the distance-velocity-power matrix in a mathematically defined offset manner.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: June 16, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Christopher Brown, Michael Schoor
  • Publication number: 20200166633
    Abstract: A sensor system for a vehicle, including a control unit, which is situated in the vehicle; multiple sensor units, which are situated on or in the vehicle and connected to the control unit, at least one of the sensor units being connected via a bidirectional connecting line for signal exchange or via a bidirectional connecting line and via a synchronization line to the control unit and being configured to receive a synchronization signal from the central control unit via the bidirectional connecting line or via the synchronization line to be operated by the control unit at a predefined point in time.
    Type: Application
    Filed: October 28, 2019
    Publication date: May 28, 2020
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Patent number: 10649076
    Abstract: An FMCW radar sensor and method for determining a relative velocity of a radar target, in which an FMCW radar measurement is performed with a transmitted signal whose modulation pattern encompasses mutually temporally interleaved sequences of ramps; from the baseband signals a two-dimensional spectrum is calculated separately for each of the sequences; from a position of a peak in at least one two-dimensional spectrum of the baseband signals, values for the relative velocity of a radar target which are periodic with a predetermined velocity period are determined; a phase relationship between spectral values that are obtained respectively at the same position in the separately calculated two-dimensional spectra is checked for agreement with phase relationships expected for several of the determined periodic values of the relative velocity; and based thereon, an estimated value for the relative velocity of the target is selected from the determined periodic values of the relative velocity.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: May 12, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Michael Schoor, Benedikt Loesch
  • Patent number: 10634775
    Abstract: A MIMO radar device for the decoupled determination of an elevation angle and azimuth angle of an object. The MIMO radar device includes an antenna array including multiple transmitting antennas, whose phase centers are situated spaced apart from one another along a first coordinate direction; and multiple receiving antennas, whose phase centers are situated spaced apart from one another along the first coordinate direction; the phase center of at least one of the transmitting antennas being spaced apart from the phase centers of the remaining transmitting antennas by an offset value along a second coordinate direction; the phase center of at least one of the receiving antennas being spaced apart from the phase centers of the remaining transmitting antennas by the offset value along the second coordinate direction; an evaluation unit to evaluate electromagnetic signals for the decoupled determination of the elevation angle and the azimuth angle of the object.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: April 28, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Benedikt Loesch, Michael Schoor
  • Patent number: 10557931
    Abstract: An FMCW radar sensor and a method for localizing a radar target, in which FMCW radar measurements are performed with transmitting antennas having different fields of view which differ in terms of an aperture angle and/or a range, the measurements each encompassing temporally interleaved sequences of ramps, and measurements with different fields of view being temporally interwoven with one another; ambiguous values for the relative velocity of the radar target being determined from a position of a peak in a two-dimensional spectrum; phase relationships between spectral values of spectra being checked for agreement with phase relationships expected for several of the determined values of the relative velocity; and on the basis thereof an estimated value for the relative velocity of the radar target being selected from the determined periodic values of the relative velocity.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: February 11, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Michael Schoor, Benedikt Loesch
  • Patent number: 10545227
    Abstract: A method for determining distances and relative velocities of objects with using a radar includes transmitting a ramp-like frequency-modulated transmission signal whose modulation pattern includes multiple sequences of ramps having an identical ramp slope, which alternately follow each other, the sequences having a frequency offset and a time offset with respect to each other; Undersampling, and subjecting to a 2D Fourier transform, base band signals for the individual ramps; determining hypotheses for the distance and the relative velocity v of an object based on alternative distance-velocity relationships and based on periodic ambiguous information about velocity; ascertaining degrees of the agreements of a phase relationship between spectral values of the spectra with phase relationships expected for the hypotheses between spectral values of the sequences; and determining unambiguous estimated values for the distance and the relative velocity by selecting a hypothesis having the maximum agreement.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 28, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Goetz Kuehnle, Michael Schoor
  • Publication number: 20190391230
    Abstract: A MIMO radar sensor is described for motor vehicles as including an antenna array, which is angle-resolving in two directions perpendicular to each other and including multiple receiving antennas, which are situated offset from one another in a first of the two directions, and multiple transmitting antennas, and including a control and evaluation unit for activating the transmitting antennas and for evaluating signals of the receiving antennas. The antenna array includes at least three selectively activatable transmitting antennas, which are offset from one another both in the first direction as well as in the second direction, and the control and evaluation unit is designed for a two-dimensional angle estimation in the first direction and the second direction using the signals received when the transmitting antennas are activated differently.
    Type: Application
    Filed: October 19, 2017
    Publication date: December 26, 2019
    Inventors: Benedikt Loesch, Michael Schoor
  • Publication number: 20190353769
    Abstract: An FMCW radar sensor and method for determining a relative velocity of a radar target, in which an FMCW radar measurement is performed with a transmitted signal whose modulation pattern encompasses mutually temporally interleaved sequences of ramps; from the baseband signals a two-dimensional spectrum is calculated separately for each of the sequences; from a position of a peak in at least one two-dimensional spectrum of the baseband signals, values for the relative velocity of a radar target which are periodic with a predetermined velocity period are determined; a phase relationship between spectral values that are obtained respectively at the same position in the separately calculated two-dimensional spectra is checked for agreement with phase relationships expected for several of the determined periodic values of the relative velocity; and based thereon, an estimated value for the relative velocity of the target is selected from the determined periodic values of the relative velocity.
    Type: Application
    Filed: April 23, 2015
    Publication date: November 21, 2019
    Inventors: Michael Schoor, Benedikt Loesch
  • Publication number: 20190353770
    Abstract: An estimation is described of the speed of objects with the aid of a radar sensor that includes multiple transmitting antennas. Multiple nested sequences of frequency ramps are emitted with the aid of multiple transmitting antennas. An individual phase encoding takes place for each transmitting antenna with the aid of a harmonic code. For estimating the speed of the object, the ambiguities due to the code multiplex are resolved.
    Type: Application
    Filed: November 16, 2017
    Publication date: November 21, 2019
    Inventors: Michael Schoor, Benedikt Loesch
  • Publication number: 20190331787
    Abstract: A method for operating a first radar sub-sensor and a second radar sub-sensor, in particular in a motor vehicle, the first radar sub-sensor being supplied with voltage by a first switching controller, and the second radar sub-sensor being supplied with voltage by a second switching controller, and the method includes the following steps: Operating the first switching controller at a first switching frequency; and operating the second switching controller at a second switching frequency, the first switching frequency differing from the second switching frequency.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 31, 2019
    Inventors: Marcel Mayer, Klaus Baur, Michael Schoor
  • Patent number: 10436890
    Abstract: A method for finding a position of an object using a MIMO FMCW radar. A ramp-shaped frequency-modulated radar signal is transmitted as a sequence of time-delayed successive ramps. A switch network is controlled to provide a corresponding switching state for each of the successive ramps. A different selection of antenna elements is used for transmission of each respective ramp. Radar echoes reflected by radar targets are mixed with the transmitted signal and are down-converted. Baseband signals resulting therefrom are transformed into spectra. Each baseband signal is separately subjected to a two-dimensional Fourier transform. A window function is applied to each of the baseband signals prior to the transform being carried out over a ramp index in a second dimension. A different window function is applied for each of the switching states. The spectra are subjected to a frequency-dependent phase correction which compensates for time offsets of the ramps.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: October 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Benedikt Loesch, Michael Schoor