Patents by Inventor Michael Scott Abrams

Michael Scott Abrams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220329287
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: December 3, 2021
    Publication date: October 13, 2022
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210111759
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard. An RF link can be established between the first SRC device and the second SRC device to enable selected data communications to continue between the first SRC device and the second SRC device even after one or more of the first SRC device or the second SRC device exits the proximity boundary.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 15, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044330
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Application
    Filed: August 5, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044328
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: July 20, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044326
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Application
    Filed: July 6, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044329
    Abstract: Spatially enabled secure communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. Secure data can be selected for NFMI communication on a spatially secure NFMI data link between the one or more SRC devices. Non-secure data can be selected for communication on one of a wireless local area network or a wireless wide area network.
    Type: Application
    Filed: July 20, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044327
    Abstract: Spatially Enabled Communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. A data block can be securely communicated by interspersing the data between an short range communication (SRC) device for near field magnetic induction (NFMI) communication within the proximity boundary and a radio frequency (RF) radio for RF communication. Data received on the SRC device and the RF radio can be reassembled to form the data block.
    Type: Application
    Filed: July 6, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200169296
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard. An RF link can be established between the first SRC device and the second SRC device to enable selected data communications to continue between the first SRC device and the second SRC device even after one or more of the first SRC device or the second SRC device exits the proximity boundary.
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200083929
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200083930
    Abstract: Spatially enabled secure communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. Secure data can be selected for NFMI communication on a spatially secure NFMI data link between the one or more SRC devices. Non-secure data can be selected for communication on one of a wireless local area network or a wireless wide area network.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200076473
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200067569
    Abstract: Spatially Enabled Communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. A data block can be securely communicated by interspersing the data between an short range communication (SRC) device for near field magnetic induction (NFMI) communication within the proximity boundary and a radio frequency (RF) radio for RF communication. Data received on the SRC device and the RF radio can be reassembled to form the data block.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20200021333
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 16, 2020
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190356358
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard. An RF link can be established between the first SRC device and the second SRC device to enable selected data communications to continue between the first SRC device and the second SRC device even after one or more of the first SRC device or the second SRC device exits the proximity boundary.
    Type: Application
    Filed: December 21, 2018
    Publication date: November 21, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190268041
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Application
    Filed: December 21, 2018
    Publication date: August 29, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190253104
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 15, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190238186
    Abstract: Spatially enabled secure communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. Secure data can be selected for NFMI communication on a spatially secure NFMI data link between the one or more SRC devices. Non-secure data can be selected for communication on one of a wireless local area network or a wireless wide area network.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 1, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190222262
    Abstract: Spatially Enabled Communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. A data block can be securely communicated by interspersing the data between an short range communication (SRC) device for near field magnetic induction (NFMI) communication within the proximity boundary and a radio frequency (RF) radio for RF communication. Data received on the SRC device and the RF radio can be reassembled to form the data block.
    Type: Application
    Filed: November 6, 2018
    Publication date: July 18, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190140696
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: July 27, 2018
    Publication date: May 9, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Patent number: 10164685
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 25, 2018
    Assignee: FREELINC TECHNOLOGIES INC.
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams