Patents by Inventor Michael Sennett

Michael Sennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220357335
    Abstract: Methods for producing high concentration protein formulations having high stability are provided. Assays for selecting proteins and formulation conditions that have high self-repulsive attributes are used as an early step in the manufacturing process. Specifically, a protein concentration-dependent self-interaction nanoparticle spectroscopy method is employed as a protein colloidal interaction assay.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Michael Marlow, Michael Sennett, Michael Schneider
  • Patent number: 11428695
    Abstract: Methods for producing high concentration protein formulations having high stability are provided. Assays for selecting proteins and formulation conditions that have high self-repulsive attributes are used as an early step in the manufacturing process. Specifically, a protein concentration-dependent self-interaction nanoparticle spectroscopy method is employed as a protein colloidal interaction assay.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 30, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Michael Marlow, Michael Sennett, Michael Schneider
  • Publication number: 20190187149
    Abstract: Methods for producing high concentration protein formulations having high stability are provided. Assays for selecting proteins and formulation conditions that have high self-repulsive attributes are used as an early step in the manufacturing process. Specifically, a protein concentration-dependent self-interaction nanoparticle spectroscopy method is employed as a protein colloidal interaction assay.
    Type: Application
    Filed: August 18, 2017
    Publication date: June 20, 2019
    Inventors: Michael Marlow, Michael Sennett, Michael Schneider
  • Patent number: 8910294
    Abstract: A method and apparatus may rapidly test applications by causing or simulating failures within nodes of a cloud computing system in support of both application and infrastructure testing. The method and system may support a variety of “attacks” including the ability to stop or freeze application servers, insert latency or drop packets between servers, constrain CPU or memory, and disable various software flows and applications. Rather than randomly inserting random failures or simulated failures into cloud-based computing system nodes to test their durability and the efficacy of particular applications or services that are executing within the system, the system and methods include a user interface for manually controlling the system attacks.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 9, 2014
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Michael A. Sennett, Brian William Batronis, John Paul Tippabattuni, Kevin Joseph Alcozar
  • Patent number: 8323436
    Abstract: A transparent, reinforced, composite polymeric fiber that has a polymeric body portion made from a first thermoplastic polymer that is transparent to visible light. The fiber includes polymeric reinforcement elements embedded within the polymeric body portion. The polymeric body portion extends between and about the polymeric reinforcement elements. Each polymeric reinforcement element is formed from a second thermoplastic polymer that is transparent to visible light. The peripheral portion and outer surface of the polymeric body portion defines a peripheral portion and outer surface, respectively, of the transparent, reinforced, composite polymeric fiber. A plurality of the fibers are formed into an array that is processed with a consolidation process to form a transparent, reinforced, composite structure.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 4, 2012
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Michael Sennett, Elizabeth A. Welsh, Jean M. Herbert, Phillip M. Cunniff
  • Patent number: 7510739
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20080241537
    Abstract: A transparent, reinforced, composite polymeric fiber that has a polymeric body portion made from a first thermoplastic polymer that is transparent to visible light. The fiber includes polymeric reinforcement elements embedded within the polymeric body portion. The polymeric body portion extends between and about the polymeric reinforcement elements. Each polymeric reinforcement element is formed from a second thermoplastic polymer that is transparent to visible light. The peripheral portion and outer surface of the polymeric body portion defines a peripheral portion and outer surface, respectively, of the transparent, reinforced, composite polymeric fiber. A plurality of the fibers are formed into an array that is processed with a consolidation process to form a transparent, reinforced, composite structure.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: Michael Sennett, Elizabeth A. Welsh, Jean M. Herbert, Phillip M. Cunniff
  • Patent number: 7358327
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 15, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7344751
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7109136
    Abstract: A conductive (electrical, ionic, and photoelectric) polymer membrane article, comprising a non-woven membrane of polymer fibers, wherein at least some of the fibers have diameters of less than one micron; and wherein the membrane has an electrical conductivity of at least about 10?6 S/cm. Also disclosed is the method of making such an article, comprising electrostatically spinning a spin dope comprising a polymer carrier and/or a conductive polymer or conductive nanoparticles, to provide inherent conductivity in the article.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kris Senecal, Lynne Samuelson, Michael Sennett, Heidi Schreuder-Gibson
  • Publication number: 20060078756
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Application
    Filed: February 9, 2004
    Publication date: April 13, 2006
    Inventors: Ferdinando Bruno, Lynne Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7022420
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: April 4, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20050208668
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 22, 2005
    Inventors: Ferdinando Bruno, Lynne Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20050208666
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 22, 2005
    Inventors: Ferdinando Bruno, Lynne Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20050208667
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 22, 2005
    Inventors: Ferdinando Bruno, Lynne Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 6800155
    Abstract: A conductive (electrical, ionic, and photoelectric) polymer membrane article, comprising a non-woven membrane of polymer fibers, wherein at least some of the fibers have diameters of less than one micron; and wherein the membrane has an electrical conductivity of at least about 10−6 S/cm. Also disclosed is the method of making such an article, comprising electrostatically spinning a spin dope comprising a polymer carrier and/or a conductive polymer or conductive nanoparticles, to provide inherent conductivity in the article.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: October 5, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kris Senecal, Lynne Samuelson, Michael Sennett, Heidi Schreuder-Gibson
  • Publication number: 20040106343
    Abstract: A conductive (electrical, ionic, and photoelectric) polymer membrane article, comprising a non-woven membrane of polymer fibers, wherein at least some of the fibers have diameters of less than one micron; and wherein the membrane has an electrical conductivity of at least about 10−6 S/cm. Also disclosed is the method of making such an article, comprising electrostatically spinning a spin dope comprising a polymer carrier and/or a conductive polymer or conductive nanoparticles, to provide inherent conductivity in the article.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 3, 2004
    Inventors: Kris Senecal, Lynne Samuelson, Michael Sennett, Heidi Schreuder-Gibson
  • Publication number: 20010045547
    Abstract: A conductive (electrical, ionic, and photoelectric) polymer membrane article, comprising a non-woven membrane of polymer fibers, wherein at least some of the fibers have diameters of less than one micron; and wherein the membrane has an electrical conductivity of at least about 10−6 S/cm. Also disclosed is the method of making such an article, comprising electrostatically spinning a spin dope comprising a polymer carrier and/or a conductive polymer or conductive nanoparticles, to provide inherent conductivity in the article.
    Type: Application
    Filed: February 22, 2001
    Publication date: November 29, 2001
    Inventors: Kris Senecal, Lynne Samuelson, Michael Sennett, Heidi Schreuder-Gibson