Patents by Inventor Michael Sheehan Seeberger

Michael Sheehan Seeberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806539
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: November 7, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Patent number: 11537702
    Abstract: Embodiments herein relate to sensor based authentication between an implantable medical device (IMD) and an external device. In an embodiment, the IMD includes a wireless communication module and an internal inertial measurement unit (IMU) capable of measuring vibrations, movement, or rotation. The IMD is configured to record an internal IMU signal from the internal IMU. The external device includes a wireless communication module and an external IMU. The external device is configured to record an external IMU signal from the external IMU. The system further includes a data processing system to receive a first level communication that can include the internal IMU signal, the external IMU signal, or both, compare data from the internal IMU signal with data from the external IMU signal, and authorize a second level communication based on results of the comparison step.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 27, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Bennett Shute, Bin Mi, Andrew Bomett, Michael Sheehan Seeberger, Grace Ann Wiechman, Kenneth P. Hoyme
  • Publication number: 20220088399
    Abstract: Embodiments herein relate to systems for tracking and maintaining the integrity of patient device data over extended periods of time. In a first aspect, a medical device system is included having an implantable device that can include a control circuit, a communication circuit, and one or more sensors. The system can also include an external device including a control circuit and a communication circuit. The external device can be configured to receive patient data from the implantable device and execute a hashing operation on units of received patient device data and one or more previous digest packets to create new digest packets. The external device can be configured to store the new digest packets and forward digest packets onto another device of the medical device system when requested to allow patient data to be authenticated. Other embodiments are also included herein.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 24, 2022
    Inventors: Jonathan Bennett Shute, Kevin G. Wika, Michael Sheehan Seeberger, James F. Hiebert, Andrew Bomett, Michael Marxhausen
  • Publication number: 20210370075
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Patent number: 11110281
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 7, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Publication number: 20200364327
    Abstract: Embodiments herein relate to sensor based authentication between an implantable medical device (IMD) and an external device. In an embodiment, the IMD includes a wireless communication module and an internal inertial measurement unit (IMU) capable of measuring vibrations, movement, or rotation. The IMD is configured to record an internal IMU signal from the internal IMU. The external device includes a wireless communication module and an external IMU. The external device is configured to record an external IMU signal from the external IMU. The system further includes a data processing system to receive a first level communication that can include the internal IMU signal, the external IMU signal, or both, compare data from the internal IMU signal with data from the external IMU signal, and authorize a second level communication based on results of the comparison step.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 19, 2020
    Inventors: Jonathan Bennett Shute, Bin Mi, Andrew Bomett, Michael Sheehan Seeberger, Grace Ann Wiechman, Kenneth P. Hoyme
  • Publication number: 20190201702
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Patent number: 9694187
    Abstract: Aspects herein include an implantable medical device, such as an implantable cardiac rhythm management device. The implantable medical device can include a housing, control circuitry disposed within the housing, and telemetry circuitry in electrical communication with the control circuitry. The control circuitry can be configured to execute a post-procedural system check procedure after the expiration of a preselected first time period. The first time period can be greater than or equal to 0.5 hours and less than or equal to 48 hours. In various aspects, the post-procedural system check procedure can include measuring diagnostic properties for one or more electrodes of an electrical stimulation lead attached to the implantable medical device. The first time period can begin to elapse after detection of a triggering event or a command by a system operator.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: July 4, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael Sheehan Seeberger, Scott R. Vanderlinde, Wyatt Keith Stahl, Imelda Wang, Scott H. Thomas
  • Publication number: 20160015986
    Abstract: Aspects herein include an implantable medical device, such as an implantable cardiac rhythm management device. The implantable medical device can include a housing, control circuitry disposed within the housing, and telemetry circuitry in electrical communication with the control circuitry. The control circuitry can be configured to execute a post-procedural system check procedure after the expiration of a preselected first time period. The first time period can be greater than or equal to 0.5 hours and less than or equal to 48 hours. In various aspects, the post-procedural system check procedure can include measuring diagnostic properties for one or more electrodes of an electrical stimulation lead attached to the implantable medical device. The first time period can begin to elapse after detection of a triggering event or a command by a system operator.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 21, 2016
    Inventors: Michael Sheehan Seeberger, Scott R. Vanderlinde, Wyatt Keith Stahl, Imelda Wang, Scott H. Thomas