Patents by Inventor Michael Spaid

Michael Spaid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110088770
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 21, 2011
    Applicant: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid
  • Patent number: 7902639
    Abstract: Improved methods and articles providing conformal coatings for a variety of devices including electronic, semiconductor, and liquid crystal display devices. Peptide formulations which bind to nanoparticles and substrates, including substrates with trenches and vias, to provide conformal coverage as a seed layer. The seed layer can be further enhanced with use of metallic films deposited on the seed layer. Seed layers can be characterized by AFM measurements and improved seed layers provide for better enhancement layers including lower resistivity in the enhancement layer. Peptides can be identified by phage display.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: March 8, 2011
    Assignee: Siluria Technologies, Inc.
    Inventors: Philip E. Garrou, Michael R. Knapp, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid
  • Publication number: 20110042126
    Abstract: The present disclosure is directed to a transparent conductor for use in touch panel devices having a plurality of nanostructures therein that provides reliable output based on user touch or pen input. To determine if a touch panel is reliable, there is disclosed a method of measuring voltages across the transparent conductor when it is touched. These measured voltages are converted into contact resistances, which are statistically analyzed. A median contact resistance is determined based on the converted contact resistances. The remaining set of converted contact resistances are analyzed to determine if they are within acceptable limits. Acceptable limits may include most of the contact resistances falling within a range, none of the contact resistances exceeding an upper limit, and a difference in contact resistances converted for different users or pens does not exceed a maximum variability.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Michael Spaid, Florian Pschenitzka
  • Publication number: 20110024296
    Abstract: This invention provides methods and systems for injection of analytes into a separation channel for resolution and detection. Samples can be preconditioned and concentrated by isotachophoresis (ITP) before the injection is triggered by a detected voltage event. Separation of analytes from other sample constituents can be enhanced using skewing channel ITP.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Charles Park, Persefoni Kechagia, Michael Spaid, Morten Jensen, Irina G. Kazakova, Josh Molho
  • Patent number: 7849424
    Abstract: Systems, devices, and methods for designing and/or manufacturing transparent conductors. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: December 7, 2010
    Assignee: Cambrios Technologies Corporation
    Inventors: Jeffrey Wolk, Haixia Dai, Xina Quan, Michael A. Spaid
  • Publication number: 20100243295
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 30, 2010
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Publication number: 20100129896
    Abstract: Systems for differentiating the lengths of nucleic acids of interest in a sample are provided. The system includes a microfluidic device, a detector, and a software system. The microfluidic device includes an amplification microchannel or microchamber containing a reaction mixture under conditions that provide one or more amplicons of the nucleic acid of interest. The detector is integral with or proximal to the microfluidic device and is configured to detect the amplicons as one or more signals from a homogenous mixture. The software system interprets one or more coincidentally detected signals to indicate lengths of one or more individual nucleic acid molecules of interest, thereby differentiating the lengths of the nucleic acids of interest.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 27, 2010
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: MICHAEL R. KNAPP, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael Spaid
  • Patent number: 7695981
    Abstract: A seed layer is formed on a substrate using a first biological agent. The seed layer may comprise densified nanoparticles which are bound to the biological agent. The seed layer is then used for a deposition of a metal layer, such as a barrier layer, an interconnect layer, a cap layer and/or a bus line for a solid state device.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: April 13, 2010
    Assignee: Siluria Technologies, Inc.
    Inventors: Haixia Dai, Khashayar Pakbaz, Michael Spaid, Theo Nikiforov
  • Patent number: 7670559
    Abstract: Microfluidic devices and systems having enhanced detection sensitivity, particularly for use in non-fluorogenic detection methods, e.g., absorbance. The systems typically employ planar microfluidic devices that include one or more channel networks that are parallel to the major plane of the device, e.g., the predominant plane of the planar structure, and a detection channel segment that is substantially orthogonal to that plane. The detection system is directed along the length of the detection channel segment using a detection orientation that is consistent with conventional microfluidic systems.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: March 2, 2010
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Ring-Ling Chien, Jeffrey A. Wolk, Michael Spaid, Richard J. McReynolds
  • Patent number: 7655081
    Abstract: An aqueous substrate surface treatment composition includes cysteine and an acidic solution having a pH of about 7 or less. The composition enables a selective deposition of a metal ion sensitizer and a subsequent selective plating of a metallic cap layer. Various CoWP plating bath compositions are also provided which may be used to form the cap layer.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: February 2, 2010
    Assignee: Siluria Technologies, Inc.
    Inventors: Haixia Dai, Khashayar Pakbaz, Michael Spaid, Theo Nikiforov
  • Patent number: 7645581
    Abstract: Methods for determining nucleic acid fragmentation status are provided. A nucleic acid of interest in a reaction mixture is contacted with two or more different probes complementary to sites separated by a point of potential fragmentation. The probes each comprise a detectable marker. The nucleic acid of interest is flowed into a detection region, where two or more coincident detectable marker signals from the probes are detected. Fragmentation status of the nucleic acid of interest is determined, coincident detection of signals from two or more of the different probes indicating the nucleic acid of interest is not fragmented between the probes.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 12, 2010
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael R. Knapp, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael A. Spaid
  • Publication number: 20090321113
    Abstract: Methods of enhancing contrast ratio of conductive nanostructure-based transparent conductors are described. Contrast ratio is significantly improved by reduction of light scattering and reflectivity of the nanostructures through steps of plating the conductive nanostructures followed by etching or oxidizing the underlying conductive nanostructures.
    Type: Application
    Filed: April 18, 2008
    Publication date: December 31, 2009
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Manfred Heidecker, Michael A. Spaid, Haixia Dai
  • Publication number: 20090321364
    Abstract: In order to filter a solution containing nanowires, a flow of the solution is generated and directed through a passage defining an aperture having a narrow width. Alternatively, a flow of the solution may be generated and directed over a micro-structured surface configured to filter the solution.
    Type: Application
    Filed: April 18, 2008
    Publication date: December 31, 2009
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Michael A. Spaid, Manfred Heidecker, Pierre-Marc Allemand, Frank Wallace
  • Publication number: 20090228131
    Abstract: Systems, devices, and methods for designing and/or manufacturing transparent conductors. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
    Type: Application
    Filed: October 11, 2007
    Publication date: September 10, 2009
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Jeffrey Wolk, Haixia Dai, Xina Quan, Michael A. Spaid
  • Publication number: 20090052029
    Abstract: Optical films formed by deposition of highly oriented nanowires and methods of aligning suspended nanowires in a desired direction by flow-induced shear force are described.
    Type: Application
    Filed: October 12, 2007
    Publication date: February 26, 2009
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Haixia Dai, Manfred Heidecker, Benny Chun Hei Ng, Hash Pakbaz, Michael Paukshto, Michael A. Spaid, Cheng-I Wang
  • Publication number: 20080283799
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Publication number: 20080286447
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Applicant: Cambrios Technologies Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Publication number: 20080259262
    Abstract: Composite transparent conductors are described, which comprise a primary conductive medium based on metal nanowires and a secondary conductive medium based on a continuous conductive film.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Applicant: Cambrios Technologies Corporation
    Inventors: David Jones, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Jeffrey Wolk
  • Patent number: 7440684
    Abstract: A microfluidic system and method for employing it to control fluid temperatures of fluids residing within microchannels of a microfluidic device. The microfluidic device is provided with a top layer and a bottom layer and microchannels configured therebetween. Temperature of the fluid within the microchannels is controlled in various ways including the use of electrical resistive heating elements and by providing zones located in contact with the top and bottom layers of the microfluidic device for circulating heat transfer of fluid therein.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 21, 2008
    Inventors: Michael A. Spaid, Andrea W. Chow, Yevgeny Yurkovetsky, Seth R. Stern, Allen R. Boronkay, Morten Juel Jensen, Carlton F. Brooks, Ken Swartz
  • Publication number: 20080143906
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: October 12, 2007
    Publication date: June 19, 2008
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid