Patents by Inventor Michael Stadermann

Michael Stadermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884544
    Abstract: Disclosed here is a method of fabricating a covalently reinforced carbon nanotube (CNT) assembly. The method includes producing a CNT assembly by pulling entangled CNTs from a CNT array fabricated on a substrate, the CNT assembly including a plurality of CNTs that are aligned; and creating covalent bonding between the CNTs of the CNT assembly by applying a high energy ion irradiation to the CNT assembly.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: January 30, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Leonardus Bimo Bayu Aji, Sergei O. Kucheyev, Michael Stadermann
  • Publication number: 20230099998
    Abstract: A product includes an aerogel having a single bulk structure, the single bulk structure having at least one dimension greater than 10 millimeters. The single bulk structure includes a plurality of pores, where each pore has a largest diameter defined as a greatest distance between pore walls of the respective pore. In addition, an average of the largest diameters of a majority of the pores is within a specified range, and the plurality of pores are distributed substantially homogenously throughout the single bulk structure.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 30, 2023
    Inventors: Colin Loeb, Patrick Campbell, Jennifer Marie Knipe, Michael Stadermann
  • Publication number: 20230101816
    Abstract: Disclosed here is a method of fabricating a covalently reinforced carbon nanotube (CNT) assembly. The method includes producing a CNT assembly by pulling entangled CNTs from a CNT array fabricated on a substrate, the CNT assembly including a plurality of CNTs that are aligned; and creating covalent bonding between the CNTs of the CNT assembly by applying a high energy ion irradiation to the CNT assembly.
    Type: Application
    Filed: June 20, 2022
    Publication date: March 30, 2023
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Leonardus Bimo Bayu Aji, Sergei O. Kucheyev, Michael Stadermann
  • Patent number: 11542613
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 3, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam
  • Patent number: 11535521
    Abstract: A product includes an aerogel having a single bulk structure, the single bulk structure having at least one dimension greater than 10 millimeters. The single bulk structure includes a plurality of pores, where each pore has a largest diameter defined as a greatest distance between pore walls of the respective pore. In addition, an average of the largest diameters of a majority of the pores is within a specified range, and the plurality of pores are distributed substantially homogenously throughout the single bulk structure.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Colin Loeb, Patrick Campbell, Jennifer Marie Knipe, Michael Stadermann
  • Publication number: 20220403523
    Abstract: Provided herein is a nanoscale material assembly made up of a plurality of nanoscale structures with a crosslinked polymer thermally deposited on the structures. Also disclosed are methods for preparing the nanoscale material assembly with a deposited crosslinked polymer. Further disclosed are various conditions and materials that when used in the preparation of the nanoscale material assemblies further enhance their mechanical properties. In some embodiments, the nanoscale material assemblies can be either nanoscale yarn assemblies or nanoscale sheet assemblies.
    Type: Application
    Filed: July 1, 2022
    Publication date: December 22, 2022
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Salmaan H. Baxamusa, Michael Stadermann
  • Patent number: 11479467
    Abstract: Disclosed here is a method of fabricating a covalently reinforced carbon nanotube (CNT) assembly. The method includes producing a CNT assembly by pulling entangled CNTs from a CNT array fabricated on a substrate, the CNT assembly including a plurality of CNTs that are aligned; and creating covalent bonding between the CNTs of the CNT assembly by applying a high energy ion irradiation to the CNT assembly.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 25, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Leonardus Bimo Bayu Aji, Sergei O. Kucheyev, Michael Stadermann
  • Publication number: 20220332609
    Abstract: Disclosed here is a capacitive deionization device for removing ions from a target solution. The capacitive deionization device includes a first porous electrode, a second porous electrode, a first header plate, a second header plate, and a sealant. The second porous electrode is disposed below and spaced from the first porous electrode. The first header plate is disposed on the first porous electrode. The first header plate defines an input flow channel that is in fluidic communication with the first porous electrode. The second header plate is disposed below the second porous electrode. The second header plate defines an output flow channel that is in fluidic communication with the second porous electrode. The sealant is disposed between the first header plate and the second header plate and surrounds the first porous electrode and the second porous electrode.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Patrick G. Campbell, Jennifer M. Knipe, Michael Stadermann
  • Publication number: 20220250954
    Abstract: The present disclosure relates to a method for making a carbon aerogel electrode material. The method involves initially making a wet organic sol-gel form. The sol-gel form is carbonized at a temperature of from about 900° C. to about 1000° C., for from about 2 hours to about 4 hours. The carbonized sol-gel is then activated under carbon dioxide flow, for from about 0.5 hour to about 1.5 hours, at from about 900° C. to about 1000° C.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Inventors: Patrick CAMPBELL, Maira Ceron HERNANDEZ, Steven HAWKS, Colin LOEB, Tuan Anh PHAM, Michael STADERMANN
  • Patent number: 11408074
    Abstract: Provided herein is a nanoscale material assembly made up of a plurality of nanoscale structures with a crosslinked polymer thermally deposited on the structures. Also disclosed are methods for preparing the nanoscale material assembly with a deposited crosslinked polymer. Further disclosed are various conditions and materials that when used in the preparation of the nanoscale material assemblies further enhance their mechanical properties. In some embodiments, the nanoscale material assemblies can be either nanoscale yarn assemblies or nanoscale sheet assemblies.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 9, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Salmaan H. Baxamusa, Michael Stadermann
  • Patent number: 11407663
    Abstract: Disclosed here is a capacitive deionization device for removing ions from a target solution. The capacitive deionization device includes a first porous electrode, a second porous electrode, a first header plate, a second header plate, and a sealant. The second porous electrode is disposed below and spaced from the first porous electrode. The first header plate is disposed on the first porous electrode. The first header plate defines an input flow channel that is in fluidic communication with the first porous electrode. The second header plate is disposed below the second porous electrode. The second header plate defines an output flow channel that is in fluidic communication with the second porous electrode. The sealant is disposed between the first header plate and the second header plate and surrounds the first porous electrode and the second porous electrode.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 9, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Jennifer M. Knipe, Michael Stadermann
  • Publication number: 20220209277
    Abstract: The present disclosure relates to an electrical energy storage apparatus. The apparatus has an interpenetrating, three dimensional periodic structure formed from an ionically conductive solid electrolyte material having a plurality of interpenetrating, non-planar channels. The interpenetrating, non-planar channels are made up of a first plurality of channels filled with an anode material, a second plurality of channels adjacent the first plurality of channels and interpenetrating with the first plurality of channels, and filled with a cathode material, and a third plurality of channels adjacent to, and interpenetrating with, one of the first and second pluralities of channels, and filled with a material to form a separator. The first, second and third channels form a spatially dense, three dimensional structure. A first non-flat current collector layer is incorporated which is in communication with the first plurality of channels, and which forms a first electrode.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Eric DUOSS, Juergen BIENER, Patrick CAMPBELL, Julie A. JACKSON, Geoffrey M. OXBERRY, Christopher SPADACCINI, Michael STADERMANN, Cheng ZHU, Bradley TREMBACKI, Jayathi MURTHY, Matthew MERRILL
  • Patent number: 11358883
    Abstract: The present disclosure relates to a flow through electrode, capacitive deionization (FTE-CDI) system which is able to adsorb nitrates from water being treated using the system. The system makes use of a pair of electrodes arranged generally parallel to one another, with a water permeable dielectric sandwiched between the electrodes. The electrodes receive a direct current voltage from an electrical circuit. At least one of the electrodes is formed from a carbon material having a hierarchical pore size distribution which includes a first plurality of pores having a width of no more than about 1 nm, and a second plurality of micro-sized pores. The micron-sized pores enable a flow of water to be pushed through the electrodes while the first plurality of pores form adsorption sites for nitrate molecules carried in the water flowing through the electrodes.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: June 14, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Maira Ceron Hernandez, Steven Hawks, Colin Loeb, Tuan Anh Pham, Michael Stadermann
  • Publication number: 20220170877
    Abstract: The present disclosure relates to a method for forming a reference electrode for use in electrochemical testing applications. The method may involve positioning a porous frit against one end of a hollow tube, and securing the frit and the hollow tube to one another to form an assembly. The method may further involve forming a silver sulfide coating on a silver wire to produce a silver sulfide coated silver wire. The method may further involve filling the hollow tube with a non-aqueous solution, and inserting at least a portion of the silver sulfide coated silver wire into the non-aqueous solution in the hollow tube.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Corie HORWOOD, Michael STADERMANN
  • Patent number: 11309574
    Abstract: The present disclosure relates to an electrical energy storage apparatus which forms an interpenetrating, three dimensional structure. The structure may have a first non-planar channel filled with an anode material to form an anode, and a second non-planar channel adjacent the first non-planar channel filled with a cathode material to form a cathode. A third non-planar channel may be formed adjacent the first and second non-planar channels and filled with an electrolyte. The first, second and third channels are formed so as to be interpenetrating and form a spatially dense, three dimensional structure. A first current collector is in communication with the first non-planar channel and forms a first electrode, while a second current collector is in communication with the second non-planar channel and forms a second electrode. A separator layers separates the current collectors.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: April 19, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric Duoss, Juergen Biener, Patrick Campbell, Julie A. Jackson, Geoffrey M. Oxberry, Christopher Spadaccini, Michael Stadermann, Cheng Zhu, Bradley Trembacki, Jayathi Murthy, Matthew Merrill
  • Patent number: 11285704
    Abstract: According to one embodiment, a product includes a composite film comprising a polymer layer directly adjacent a graphene layer. According to another embodiment, a process includes layering a graphene layer onto a polymer layer to form a composite film.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 29, 2022
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Michael Stadermann, Patrick Campbell, Philip E. Miller, Chantel Aracne-Ruddle, Sung Ho Kim, Francisco J. Espinosa-Loza
  • Publication number: 20220055356
    Abstract: A process includes layering a graphene layer onto a polymer layer to form a composite film.
    Type: Application
    Filed: November 3, 2021
    Publication date: February 24, 2022
    Inventors: Michael Stadermann, Patrick Campbell, Philip E. Miller, Chantel Aracne-Ruddle, Sung Ho Kim, Francisco J. Espinosa-Loza
  • Publication number: 20210317587
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam
  • Publication number: 20210246032
    Abstract: A product includes an aerogel having a single bulk structure, the single bulk structure having at least one dimension greater than 10 millimeters. The single bulk structure includes a plurality of pores, where each pore has a largest diameter defined as a greatest distance between pore walls of the respective pore. In addition, an average of the largest diameters of a majority of the pores is within a specified range, and the plurality of pores are distributed substantially homogenously throughout the single bulk structure.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 12, 2021
    Inventors: Colin Loeb, Patrick Campbell, Jennifer Marie Knipe, Michael Stadermann
  • Patent number: 11053597
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 6, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam