Patents by Inventor Michael Steven Byars
Michael Steven Byars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210237027Abstract: A reactor for accommodating high contaminant feedstocks includes a reactor vessel having an inlet for introducing a feedstock containing contaminants into an interior of the reactor vessel. A basket is located within the reactor vessel interior and contains a particulate material for removing contaminants from the feedstock to form a purified feedstock that is discharged to a purified feedstock outlet. A catalyst is located within the reactor vessel and in fluid communication with the purified feedstock outlet of the basket for contacting the purified feedstock to form a desired product.Type: ApplicationFiled: April 20, 2021Publication date: August 5, 2021Inventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20210214618Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: ApplicationFiled: March 30, 2021Publication date: July 15, 2021Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10981142Abstract: A reactor for accommodating high contaminant feedstocks includes a reactor vessel having an inlet for introducing a feedstock containing contaminants into an interior of the reactor vessel. A basket is located within the reactor vessel interior and contains a particulate material for removing contaminants from the feedstock to form a purified feedstock that is discharged to a purified feedstock outlet. A catalyst is located within the reactor vessel and in fluid communication with the purified feedstock outlet of the basket for contacting the purified feedstock to form a desired product.Type: GrantFiled: June 12, 2020Date of Patent: April 20, 2021Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10961463Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: GrantFiled: November 25, 2019Date of Patent: March 30, 2021Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20200391176Abstract: A reactor for accommodating high contaminant feedstocks includes a reactor vessel having an inlet for introducing a feedstock containing contaminants into an interior of the reactor vessel. A basket is located within the reactor vessel interior and contains a particulate material for removing contaminants from the feedstock to form a purified feedstock that is discharged to a purified feedstock outlet. A catalyst is located within the reactor vessel and in fluid communication with the purified feedstock outlet of the basket for contacting the purified feedstock to form a desired product.Type: ApplicationFiled: June 12, 2020Publication date: December 17, 2020Inventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20200347308Abstract: In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr·ft2 to form a hydroprocessed product.Type: ApplicationFiled: July 20, 2020Publication date: November 5, 2020Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10717938Abstract: In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr·ft2 to form a hydroprocessed product.Type: GrantFiled: April 12, 2019Date of Patent: July 21, 2020Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20200224101Abstract: A system for the pyrolysis of a pyrolysis feedstock utilizes a pyrolysis reactor for producing pyrolysis products from the pyrolysis feedstock to be pyrolyzed. An eductor condenser unit in fluid communication with the pyrolysis reactor is used to condense pyrolysis gases. The eductor condenser unit has an eductor assembly having an eductor body that defines a first flow path with a venturi restriction disposed therein for receiving a pressurized coolant fluid and a second flow path for receiving pyrolysis gases from the pyrolysis reactor The second flow path intersects the first flow path so that the received pyrolysis gases are combined with the coolant fluid. The eductor body has a discharge to allow the combined coolant fluid and pyrolysis gases to be discharged together from the eductor.Type: ApplicationFiled: March 24, 2020Publication date: July 16, 2020Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10611966Abstract: A system and method for the pyrolysis of a pyrolysis feedstock utilizes a pyrolysis reactor having a pyrolysis conduit and a solids return conduit segment. Each segment is configured with an outlet and an inlet to receive and discharge solid materials that are circulated through the reactor through the different segments. A solids conveyor is disposed within the pyrolysis conduit segment to facilitate conveying solid materials from the solids inlet upward through the pyrolysis conduit segment toward the solids discharge outlet. A pyrolysis feedstock is introduced into the pyrolysis reactor and at least a portion of the feedstock is converted to pyrolysis gases within the pyrolysis conduit segment, which are discharged through a gas outlet.Type: GrantFiled: March 15, 2018Date of Patent: April 7, 2020Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20200087577Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: ApplicationFiled: November 25, 2019Publication date: March 19, 2020Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10487268Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: GrantFiled: November 20, 2017Date of Patent: November 26, 2019Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20190338205Abstract: A heavy fuel oil product consists essentially of a hydroprocessed product of a high-sulfur-content feedstock that is at least one of A) a feedstock that is non-compliant with ISO 8217: 2017; B) a feedstock that is of non-merchantable quality as a residual marine fuel oil, and C) an intermediate product obtained by hydroprocessing a feedstock that is non-compliant with ISO 8217: 2017 so that the intermediate product is compliant with ISO 8217: 2017 but has a sulfur content of from 0.5 wt. % or more, the hydroprocessed product having a final sulfur content (ISO 14596 or ISO 8754) of less than 0.5 wt. %.Type: ApplicationFiled: July 15, 2019Publication date: November 7, 2019Inventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20190233742Abstract: In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr·ft2 to form a hydroprocessed product.Type: ApplicationFiled: April 12, 2019Publication date: August 1, 2019Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 10260009Abstract: In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr·ft2 to form a hydroprocessed product.Type: GrantFiled: August 3, 2016Date of Patent: April 16, 2019Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20180371322Abstract: A system and method for the pyrolysis of a pyrolysis feedstock utilizes a pyrolysis reactor having a pyrolysis conduit and a solids return conduit segment. Each segment is configured with an outlet and an inlet to receive and discharge solid materials that are circulated through the reactor through the different segments. A solids conveyor is disposed within the pyrolysis conduit segment to facilitate conveying solid materials from the solids inlet upward through the pyrolysis conduit segment toward the solids discharge outlet. A pyrolysis feedstock is introduced into the pyrolysis reactor and at least a portion of the feedstock is converted to pyrolysis gases within the pyrolysis conduit segment, which are discharged through a gas outlet.Type: ApplicationFiled: March 15, 2018Publication date: December 27, 2018Inventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20180072957Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: ApplicationFiled: November 20, 2017Publication date: March 15, 2018Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 9828552Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: GrantFiled: August 3, 2015Date of Patent: November 28, 2017Assignee: Duke Technologies, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20170037325Abstract: In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr-ft2 to form a hydroprocessed product.Type: ApplicationFiled: August 3, 2016Publication date: February 9, 2017Inventors: Michael D. Ackerson, Michael Steven Byars
-
Patent number: 9096804Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: GrantFiled: January 19, 2012Date of Patent: August 4, 2015Assignee: P.D. Technology Development, LLCInventors: Michael D. Ackerson, Michael Steven Byars
-
Publication number: 20120184789Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.Type: ApplicationFiled: January 19, 2012Publication date: July 19, 2012Inventors: Michael D. Ackerson, Michael Steven Byars