Patents by Inventor Michael Steven Datt

Michael Steven Datt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394864
    Abstract: A process for preparing a cobalt based Fischer-Tropsch synthesis catalyst precursor includes introducing a multi-functional carboxylic acid having the general formula (1) HOOC—C*R1C*R2—COOH (1) or a precursor thereof, where C* in each of C*Ri and C*R2 is a sp2 carbon, and R1 and R2 are the same or different, and are each selected from the group consisting of hydrogen and an organic group, into and/or onto a particulate catalyst support. The ratio of the quantity of multifunctional carboxylic acid used relative to the support surface area is at least 0.3 ?mol carboxylic acid/m2 of support surface area. Simultaneously with the introduction of the carboxylic acid into and/or onto the catalyst support, or subsequent thereto, a cobalt compound is introduced into and/or onto the catalyst support. The impregnated support is calcined to obtain the cobalt based Fischer-Tropsch synthesis catalyst precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 12, 2013
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jan Van De Loosdrecht, Michael Steven Datt, Jan Mattheus Botha
  • Patent number: 8067333
    Abstract: A process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst includes, in a first activation stage, treating a particulate catalyst precursor with a reducing gas, at a heating rate, HR1, until the precursor has reached a temperature, T1, where 80° C.?T1?180° C., to obtain a partially treated precursor. In a second activation stage, the partially treated precursor is treated with a reducing gas, at an average heating rate, HR2, with x step increments, where 0<HR2<HR1, for a time, t1, where t1 is from 0.1 to 20 hours, to obtain a partially reduced precursor. Thereafter, in a third activation stage, the partially reduced precursor is treated with a reducing gas, at a heating rate, HR3, where HR3>HR2 until the partially reduced precursor reaches a temperature, T2. The partially reduced precursor is maintained at T2 for a time, t2, where t2 is from 0 to 20 hours, to obtain an activated catalyst.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 29, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jacobus Lucus Visagie, Jan Mattheus Botha, Johannes Gerhardus Koortzen, Michael Steven Datt, Alta Bohmer, Jan Van De Loosdrecht, Abdool Muthalib Saib
  • Patent number: 8062992
    Abstract: A process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst includes, in a first activation stage, treating a particulate catalyst precursor with a reducing gas, at a heating rate, HR1, until the precursor has reached a temperature, T1, where 80° C.?T1?180° C., to obtain a partially treated precursor. In a second activation stage, the partially treated precursor is treated with a reducing gas, at a heating rate, HR2, where 0?HR2<HR1, for a time, t1, where t1 is from 0.1 to 20 hours, to obtain a partially reduced precursor. Thereafter, in a third activation stage, the partially reduced precursor is treated with a reducing gas, at a heating rate, HR3, where HR3>HR2 until the partially reduced precursor reaches a temperature, T2. The partially reduced precursor is maintained at T2 for a time, t2, where t2 is from 0 to 20 hours, to obtain an activated catalyst.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 22, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jacobus Lucus Visagie, Jan Mattheus Botha, Johannes Gerhardus Koortzen, Michael Steven Datt, Alta Bohmer, Jan Van De Loosdrecht, Abdool Muthalib Saib
  • Publication number: 20110028575
    Abstract: A process for preparing a cobalt based Fischer-Tropsch synthesis catalyst precursor includes introducing a multi-functional carboxylic acid having the general formula (1) HOOC—C*R1C*R2—COOH (1) or a precursor thereof, where C* in each of C*Ri and C*R2 is a sp2 carbon, and R1 and R2 are the same or different, and are each selected from the group consisting of hydrogen and an organic group, into and/or onto a particulate catalyst support. The ratio of the quantity of multifunctional carboxylic acid used relative to the support surface area is at least 0.3 ?mol carboxylic acid/m2 of support surface area. Simultaneously with the introduction of the carboxylic acid into and/or onto the catalyst support, or subsequent thereto, a cobalt compound is introduced into and/or onto the catalyst support. The impregnated support is calcined to obtain the cobalt based Fischer-Tropsch synthesis catalyst precursor.
    Type: Application
    Filed: April 3, 2009
    Publication date: February 3, 2011
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jan Van De Loosdrecht, Michael Steven Datt, Jan Mattheus Botha
  • Publication number: 20100152035
    Abstract: A process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst includes, in a first activation stage, treating a particulate catalyst precursor with a reducing gas, at a heating rate, HR1, until the precursor has reached a temperature, T1, where 80° C.?T1?180° C., to obtain a partially treated precursor. In a second activation stage, the partially treated precursor is treated with a reducing gas, at a heating rate, HR2, where 0?HR2<HR1, for a time, t1, where t1 is from 0.1 to 20 hours, to obtain a partially reduced precursor. Thereafter, in a third activation stage, the partially reduced precursor is treated with a reducing gas, at a heating rate, HR3, where HR3>HR2 until the partially reduced precursor reaches a temperature, T2. The partially reduced precursor is maintained at T2 for a time, t2, where t2 is from 0 to 20 hours, to obtain an activated catalyst.
    Type: Application
    Filed: May 5, 2008
    Publication date: June 17, 2010
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jacobus Lucus Visagie, Jan Mattheus Botha, Johannes Gerhardus Koortzen, Michael Steven Datt, Alta Bohmer, Jan Van De Loosdrecht, Abdool Muthalib Saib
  • Publication number: 20100144520
    Abstract: A process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst includes, in a first activation stage, treating a particulate catalyst precursor with a reducing gas, at a heating rate, HR1, until the precursor has reached a temperature, T1, where 80° C.?T1?180° C., to obtain a partially treated precursor. In a second activation stage, the partially treated precursor is treated with a reducing gas, at an average heating rate, HR2, with x step increments, where 0<HR2<HR1, for a time, t1, where t1 is from 0.1 to 20 hours, to obtain a partially reduced precursor. Thereafter, in a third activation stage, the partially reduced precursor is treated with a reducing gas, at a heating rate, HR3, where HR3>HR2 until the partially reduced precursor reaches a temperature, T2. The partially reduced precursor is maintained at T2 for a time, t2, where t2 is from 0 to 20 hours, to obtain an activated catalyst.
    Type: Application
    Filed: May 5, 2008
    Publication date: June 10, 2010
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jacobus Lucus Visagie, Jan Mattheus Botha, Johannes Gerhardus Koortzen, Michael Steven Datt, Alta Bohmer, Jan Van De Loosdrecht, Abdool Muthalib Saib