Patents by Inventor Michael T. Pelletier

Michael T. Pelletier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220074302
    Abstract: Downhole core sampling apparatus including first and second sealing elements and at least one pump configured to pump wellbore fluid from the annular space defined by the sealing elements. The downhole core sampling apparatus is capable of obtaining formation fluid saturated core samples for laboratory testing and reservoir evaluation. Method and system for obtaining formation fluid saturated core samples from the sidewall of subterranean wellbores is provided.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Anthony Van Zuilekom, Christopher Michael Jones, Darren Gascooke, Michael T. Pelletier
  • Patent number: 11215052
    Abstract: This disclosure provides a method of determining a pore throat size distribution of reservoir rock, comprising injecting a set of different-sized probe particles through a portion of reservoir rock and measuring retention volumes or times of each of the different-sized probe particles eluting from the portion of reservoir rock. This disclosure also provides a testing apparatus comprising a probe tube for receiving a set of different-sized probe particles in an elution fluid returning from a portion of reservoir rock and an analytical module connected to receive the elution fluid from the probe tube.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 4, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael T. Pelletier, Li Gao, Megan Renee Pearl, Dale E. Jamison
  • Publication number: 20210404335
    Abstract: The disclosed embodiments include systems and methods to perform in-situ analysis of reservoir fluids. In some embodiments, the system includes a first vial containing a first insulating cylinder having a first internal cavity for storing electrolytes, a capillary tube, and a first sealable end having a first seal that prevents the electrolytes that are stored in the first internal cavity from flowing through the first sealable end while the first seal remains intact. The system also includes a second vial containing a second insulating cylinder having a second internal cavity for receiving the electrolytes that are stored in the first insulating cylinder, and a second sealable end having a second seal. The system further includes a tube positioned between the first vial and the second vial, where the tube provides at least one fluid flow path between the first vial and the second vial.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 30, 2021
    Inventors: Katrina S. AKITA, Michael T. PELLETIER, Megan PEARL, Jing SHEN
  • Patent number: 11187079
    Abstract: Downhole core sampling apparatus including first and second sealing elements and at least one pump configured to pump wellbore fluid from the annular space defined by the sealing elements. The downhole core sampling apparatus is capable of obtaining formation fluid saturated core samples for laboratory testing and reservoir evaluation. Method and system for obtaining formation fluid saturated core samples from the sidewall of subterranean wellbores is provided.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: November 30, 2021
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Anthony Van Zuilekom, Christopher Michael Jones, Darren Gascooke, Michael T. Pelletier
  • Publication number: 20210355771
    Abstract: Gas bubble migration can be managed in liquids. In one example, a system can execute wellbore-simulation software to simulate changes in gas dissolution in a liquid over time. This may involve dividing the wellbore into segments spanning from the well surface to the downhole location, each segment spanning a respective depth increment between the well surface and the downhole location. Next, for each time, the system can determine a respective multiphase-flow regime associated with each segment of the plurality of segments based on a simulated pressure level, a simulated temperature, a simulated pipe eccentricity, and a simulated fluid velocity at the segment. The system can also determine how much of the gas is dissolved in the liquid at each segment based on the respective multiphase-flow regime at the segment. The system can display a graphical user interface representing the gas dissolution in the liquid over time.
    Type: Application
    Filed: June 4, 2019
    Publication date: November 18, 2021
    Inventors: Jianxin Lu, Michael T. Pelletier, Dale E. Jamison, Arash Haghshenas, Li Gao
  • Publication number: 20210332700
    Abstract: The disclosed embodiments include downhole sample extractors and downhole sample extraction systems. In some embodiments, the downhole sample extractor includes a sample container chamber that holds a sample container containing a downhole sample. The downhole sample extractor also includes a sample extraction chamber having an internal chamber that is partially filled with a carrier solution, wherein the downhole sample is mixed with the carrier solution in the internal chamber of the extraction container. The downhole sample extractor further includes a first piston that, when actuated, inserts the sample container into the internal chamber of the sample extraction chamber.
    Type: Application
    Filed: November 28, 2018
    Publication date: October 28, 2021
    Inventors: Michael T. PELLETIER, Darren GASCOOKE, Christopher Michael JONES
  • Patent number: 11156083
    Abstract: Disclosed are methods and systems for determination of fluid contamination of a fluid sample from a downhole fluid sampling tool. A method may comprise obtaining a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid; obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition; obtaining initial values of iterative parameters, wherein the iterative parameters comprise fluid contamination of the fluid sample; determining calculated fluid properties of the reservoir fluid using equation of state flash calculating; and repeating steps of determining component mole fractions and determining calculated fluid properties for use in the mole fraction distribution function until a comparison of one or more of the calculated fluid properties with one or more of the input parameters is within a tolerance error.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 26, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Tian He, Mehdi Alipour Kallehbasti, Ming Gu, Christopher Michael Jones, Darren Gascooke, Michael T. Pelletier, Di Du
  • Publication number: 20210310352
    Abstract: A formation test probe and a formation test system and method for implementing a self-drilling probe are disclosed. In some embodiments, a test probe includes a body having a channel therethrough to a frontside port, and further includes drill-in tubing disposed within the channel and having a front tip that is extensible from the frontside port. An exciter is disposed within the body in contact with the drill-in tubing and operably configured to induce resonant vibration in the drill-in tubing during a drill-in phase of a formation test cycle.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 7, 2021
    Inventors: Michael T. Pelletier, Darren Gascooke, Li Gao, Christopher W. Berry
  • Patent number: 11131154
    Abstract: A centralizer apparatus for deployment in a subterranean wellbore, including a tubular adapted to be deployed in the subterranean wellbore such that a long axis of the tubular is parallel to a portion wellbore and a stack of fin modules stacked parallel to the long axis of the tubular. Each one of the fin modules includes a hub having an opening adapted to fit around the outer surface of the tubular, the hub including a stop structure configured to restrict the rotation of adjacent ones of the fin modules in the stack of fin module, and, one or more fin blades projecting from an outer surface of the hub. Rotating the tubular in one rotational direction aligns the fin modules into a screw-shaped state such that the one or more fin blades of adjacently stacked fin modules are progressively offset in a rotational direction perpendicular to the long axis of the tubular.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: September 28, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Samuel J. Lewis, Michael T. Pelletier, William Cecil Pearl, Jr.
  • Patent number: 11104835
    Abstract: Methods and systems for using a cooling apparatus comprising an elastocaloric material to reduce the temperature of downhole packages in a subterranean formation are provided herein. In one or more embodiments, the methods of the present disclosure comprise: disposing a downhole package in a wellbore penetrating a portion of a subterranean formation; and disposing a cooling apparatus comprising an elastocaloric material and at least one actuator downhole in the wellbore, wherein the cooling apparatus is adjacent to the downhole package. In one or more embodiments, the systems of the present disclosure comprise: a downhole package having a temperature; and a cooling apparatus coupled to the downhole package, wherein the cooling apparatus comprises an elastocaloric material coupled to at least one actuator, wherein the cooling apparatus is configured to reduce the temperature of the downhole package.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: August 31, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Li Gao, David L. Perkins, Michael T. Pelletier
  • Patent number: 11090685
    Abstract: Disclosed are methods of fabricating an integrated computational element for use in an optical computing device. One method includes providing a substrate that has a first surface and a second surface substantially opposite the first surface, depositing multiple optical thin films on the first and second surfaces of the substrate via a thin film deposition process, and thereby generating a multilayer film stack device, cleaving the substrate to produce at least two optical thin film stacks, and securing one or more of the at least two optical thin film stacks to a secondary optical element for use as an integrated computational element (ICE).
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 17, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David L. Perkins, Michael T. Pelletier, James M. Price
  • Publication number: 20210207478
    Abstract: Downhole tool is provided that includes a body, an intake port for receiving fluid from external the body, a pump, a filtration device, and an exit port. The pump is in fluid communication with the intake port for withdrawing fluid through the intake port. The filtration device has a particulate removing filter, and a flow line extending from the intake port to the filtration device. The filtration device is contained within the body and is in fluid communication with the intake port. The exit port is in fluid communication with the filtration device for ejecting the fluid to external the body.
    Type: Application
    Filed: December 28, 2016
    Publication date: July 8, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael T. PELLETIER, Christopher Michael JONES, Darren GASCOOKE, David L. PERKINS
  • Patent number: 11041358
    Abstract: Oilfield tools having a metal-to-metal seal formed between a first metal surface and a second metal surface, wherein at least one of the first and second metal surfaces are at least partially coated by chemical bonding or physical deposition of a coating material that is more durable and has a lower coefficient of friction than either or both of the first and/or second metal surfaces to which the coating material is applied.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 22, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren Gascooke, James M. Price, Michael T. Pelletier
  • Publication number: 20210164908
    Abstract: The present application relates sensing reactive components in fluids by monitoring band gap changes to a material having interacted with the reactive components via physisorption and/or chemisorption. In some embodiments, the sensors of the present disclosure include the material as a reactive surface on a substrate. The band gap changes may be detected by measuring conductance changes and/or spectroscopic changes. In some instances, the sensing may occur downhole during one or more wellbore operations like drilling, hydraulic fracturing, and producing hydrocarbons.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Michael T. Pelletier, David L. Perkins, Christopher Michael Jones
  • Patent number: 10962484
    Abstract: The present application relates sensing reactive components in fluids by monitoring band gap changes to a material having interacted with the reactive components via physisorption and/or chemisorption. In some embodiments, the sensors of the present disclosure include the material as a reactive surface on a substrate. The band gap changes may be detected by measuring conductance changes and/or spectroscopic changes. In some instances, the sensing may occur downhole during one or more wellbore operations like drilling, hydraulic fracturing, and producing hydrocarbons.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 30, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael T. Pelletier, David L. Perkins, Christopher Michael Jones
  • Publication number: 20210080380
    Abstract: A system comprising (i) thin film optical element comprising substrate and thin film stack (?2 film layers; uniform thickness—variation of less than ±5% in any 10 mm2 stack) deposited on substrate's first side; (ii) holder comprising at least one opening; wherein holder has inner side and outer side having beveled edge extending into lip having flat side and beveled edge side; wherein beveled edge/beveled edge side of lip form angle <45° with flat side of lip/first side; wherein flat side of lip and holder inner side define socket receiving substrate; wherein opening exposes first side to deposition plume; wherein first side contacts flat side of lip, thereby allowing film stack deposition on first side; wherein beveled edge side/beveled edge provide film uniformity, and (iii) deposition source providing plume traveling towards first side perpendicular to flat side of lip/first deposition side; and wherein beveled edge side faces plume.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Christopher Michael JONES, Bin DAI, James M. PRICE, Jian LI, Michael T. PELLETIER, Darren GASCOOKE
  • Patent number: 10941654
    Abstract: Fluid properties like viscosity, yield strength, and density may be measured by analyzing fluid motion in response to disturbing the surface of the fluid. For example, a method may include disturbing a surface of a fluid in one or more locations, thereby forming a deformation and waves at the surface of the fluid for the one or more locations; imaging and measuring at least one selected from the group consisting of the deformation, the waves, and a combination thereof; and calculating a property of the fluid based on the at least one selected from the group consisting of the deformation, the waves, and a combination thereof, the property selected from the group consisting of viscosity, yield strength, density, and any combination thereof.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 9, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Li Gao, Michael T. Pelletier, Andreas Ellmauthaler
  • Publication number: 20210047890
    Abstract: A centralizer apparatus for deployment in a subterranean wellbore, including a tubular adapted to be deployed in the subterranean wellbore such that a long axis of the tubular is parallel to a portion wellbore and a stack of fin modules stacked parallel to the long axis of the tubular. Each one of the fin modules includes a hub having an opening adapted to fit around the outer surface of the tubular, the hub including a stop structure configured to restrict the rotation of adjacent ones of the fin modules in the stack of fin module, and, one or more fin blades projecting from an outer surface of the hub. Rotating the tubular in one rotational direction aligns the fin modules into a screw-shaped state such that the one or more fin blades of adjacently stacked fin modules are progressively offset in a rotational direction perpendicular to the long axis of the tubular.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: Samuel J. Lewis, Michael T. Pelletier, William Cecil Pearl, JR.
  • Patent number: 10914169
    Abstract: A frequency sensor comprises a surface functionalized with a reactant sensitive to an analyte and a vibration detector coupled to the functional surface to detect a frequency of a fluid having the analyte and located on the functional surface during vibration thereof. The frequency sensor comprises a measurement circuitry coupled to the vibration detector to determine a frequency shift over time of the detected frequency, wherein the frequency shift corresponds to the presence of the analyte which has reacted with the reactant.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 9, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael T. Pelletier, Li Gao
  • Patent number: 10914165
    Abstract: A method includes collecting tracer concentration measurements from a flow stream in a borehole as a function of time. The method also includes recovering an uplink telemetry signal from the collected tracer concentration measurements, wherein the uplink telemetry signal conveys a downhole tool measurement or communication. The method also includes performing an operation in response to the recovered uplink telemetry signal.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: February 9, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael T. Pelletier, Li Gao, Christopher M. Jones