Patents by Inventor Michael Tkachuk
Michael Tkachuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240280478Abstract: A selective gas sensor designed to operate for extended period of time. The sensor selectivity to specific gases is achieved by implementing a bandpass filter that selectively filters the interference signal from common hydrocarbons. Stability is accomplished by application of two reference detectors, one responsible for the temperature compensation and another responsible for the mirror and filter aging.Type: ApplicationFiled: February 16, 2023Publication date: August 22, 2024Inventors: Michael Tkachuk, Solovyov Vyacheslav, Tony Providenti, Charles Scolaro
-
Patent number: 9627422Abstract: There is provided a photodetector, comprising a semiconductor heterostructure having in sequence: a first collection layer having substantially uniform doping of a first doping type; a radiation-absorbing layer having substantially uniform doping of the first doping type and having a band gap less than or equal to that of the first collection layer; and a barrier layer having a band gap greater than that of the radiation-absorbing layer, the top of the valence band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is n-type or the bottom of the conduction band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is p-type; wherein a first portion of the barrier layer is of the first doping type and a second portion of the barrier layer is of a second doping type, the first portion of the barrier layer being adjacent to the radiation-absorbing layer, forming a hetType: GrantFiled: May 15, 2015Date of Patent: April 18, 2017Assignee: BAH HOLDINGS LLCInventors: Sergey Suchalkin, Michael Tkachuk
-
Publication number: 20160336361Abstract: There is provided a photodetector, comprising a semiconductor heterostructure having in sequence: a first collection layer having substantially uniform doping of a first doping type; a radiation-absorbing layer having substantially uniform doping of the first doping type and having a band gap less than or equal to that of the first collection layer; and a barrier layer having a band gap greater than that of the radiation-absorbing layer, the top of the valence band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is n-type or the bottom of the conduction band of the barrier layer being substantially equal in energy to that of the radiation-absorbing layer where the first doping type is p-type; wherein a first portion of the barrier layer is of the first doping type and a second portion of the barrier layer is of a second doping type, the first portion of the barrier layer being adjacent to the radiation-absorbing layer, forming a hetType: ApplicationFiled: May 15, 2015Publication date: November 17, 2016Inventors: Sergey Suchalkin, Michael Tkachuk
-
Publication number: 20160238528Abstract: Optopair for use in sensors and analyzers of gases such as methane, and a fabrication method therefor is disclosed. It comprises: a) an LED, either cascaded or not, having at least one radiation emitting area, whose spectral maximum is de-tuned from the maximum absorption spectrum line of the gas absorption spectral band; and b) a Photodetector, whose responsivity spectral maximum can be either de-tuned from, or alternatively completely correspond to the maximum absorption spectrum line of the absorption spectral band of the gas. Modeling the LED emission and Photodetector responsivity spectra and minimizing the temperature sensitivity of the optopair based on the technical requirements of the optopair signal registration circuitry, once the spectral characteristics of the LED and Photodetector materials and the temperature dependencies of said spectral characteristics are determined, provides the LED de-tuned emission and Photodetector responsivity target peaks respectively.Type: ApplicationFiled: February 16, 2015Publication date: August 18, 2016Applicant: BAH HOLDINGS LLCInventors: Michael Tkachuk, SERGEY SUCHALKIN
-
Patent number: 8957376Abstract: Optopair for use in sensors and analyzers of gases such as methane, and a fabrication method therefor is disclosed. It comprises: a) an LED, either cascaded or not, having at least one radiation emitting area, whose spectral maximum is de-tuned from the maximum absorption spectrum line of the gas absorption spectral band; and b) a Photodetector, whose responsivity spectral maximum can be either de-tuned from, or alternatively completely correspond to the maximum absorption spectrum line of the absorption spectral band of the gas. Modeling the LED emission and Photodetector responsivity spectra and minimizing the temperature sensitivity of the optopair based on the technical requirements of the optopair signal registration circuitry, once the spectral characteristics of the LED and Photodetector materials and the temperature dependencies of said spectral characteristics are determined, provides the LED de-tuned emission and Photodetector responsivity target peaks respectively.Type: GrantFiled: May 2, 2014Date of Patent: February 17, 2015Assignee: Bah Holdings, LLCInventors: Michael Tkachuk, Sergey Suchalkin
-
Publication number: 20150041655Abstract: Optopair for use in sensors and analyzers of gases such as methane, and a fabrication method therefor is disclosed. It comprises: a) an LED, either cascaded or not, having at least one radiation emitting area, whose spectral maximum is de-tuned from the maximum absorption spectrum line of the gas absorption spectral band; and b) a Photodetector, whose responsivity spectral maximum can be either de-tuned from, or alternatively completely correspond to the maximum absorption spectrum line of the absorption spectral band of the gas. Modeling the LED emission and Photodetector responsivity spectra and minimizing the temperature sensitivity of the optopair based on the technical requirements of the optopair signal registration circuitry, once the spectral characteristics of the LED and Photodetector materials and the temperature dependencies of said spectral characteristics are determined, provides the LED de-tuned emission and Photodetector responsivity target peaks respectively.Type: ApplicationFiled: May 2, 2014Publication date: February 12, 2015Applicant: BAH HOLDINGS LLCInventors: MICHAEL TKACHUK, Sergey Suchalkin
-
Patent number: 8890272Abstract: A photodetector is provided, comprising: a radiation-absorbing semiconductor region and a collection semiconductor region separated by and each in contact with a barrier semiconductor region; wherein, at least in the absence of an applied bias voltage, the band gap between the valence band energy and the conduction band energy of the barrier semiconductor region is offset from the band gap between the valence band energy and the conduction band energy of the radiation-absorbing semiconductor region so as to form an energy barrier between the radiation-absorbing semiconductor region and the collection semiconductor region which resists the flow of minority carriers from the radiation-absorbing semiconductor region to the collection semiconductor region. Also provided is a method of manufacturing a photodetector.Type: GrantFiled: August 10, 2011Date of Patent: November 18, 2014Assignee: BAH Holdings LLCInventor: Michael Tkachuk
-
Patent number: 8742370Abstract: In one aspect of the disclosure, a gas sensor is provided, comprising: a chamber for containing a gas sample in use, and a radiation source adapted to emit radiation within a first waveband. A photoluminescent material, upon absorption of radiation of a first wavelength within the first waveband, emits radiation of a second wavelength, the photoluminescent material being responsive to the presence of a target gas species in the gas sample. The gas sensor further comprises a luminescence detector assembly. The luminescence detector assembly is adapted to detect radiation of the second wavelength and output a corresponding measurement signal related to the concentration of the target gas species. An optics assembly is adapted to receive radiation emitted by the radiation source and to converge the radiation towards a location at which the luminescence detector assembly cannot receive radiation.Type: GrantFiled: March 21, 2012Date of Patent: June 3, 2014Assignee: BAH Holdings LLCInventor: Michael Tkachuk
-
Patent number: 8692997Abstract: A gas or particulate sensor is provided for the detection of at least two target gases and/or particulates. The sensor comprises: a chamber for containing a gas sample under test; a first optical measurement channel configured for the detection of a first target gas or particulate within the gas sample, and a second optical measurement channel configured for the detection of a second target gas or particulate within the gas sample, each optical measurement channel comprising a respective optopair which comprises a radiation source adapted to emit radiation and a radiation detector adapted to output a signal in response to detected radiation; and focusing optics able to form an image of an object.Type: GrantFiled: August 24, 2011Date of Patent: April 8, 2014Assignee: BAH Holdings LLCInventors: Michael Tkachuk, Michael Gouzman
-
Patent number: 8665424Abstract: An optical absorption gas analyzer is provided for determining the concentration of a target gas in a sample, comprising: a chamber for containing the sample in use; an optopair, comprising a light emitting diode (LED) arranged to emit radiation into the chamber and a photovoltaic radiation detector arranged to detect radiation transmitted through the chamber from the LED and to output a corresponding detection signal SS; a temperature sensor arranged in thermal contact with the LED and the photovoltaic radiation detector, and to output a temperature signal T representing the temperature of the optopair; a memory having stored therein data representative of the baseline detection signal ST output by the optopair in the absence of the target gas as a function of the temperature of the optopair across a range of temperatures; and a processor adapted to generate a differential detection signal SA indicative of the concentration of target gas in the sample by retrieving from the memory the baseline detection signType: GrantFiled: November 11, 2010Date of Patent: March 4, 2014Assignee: BAH Holdings LLCInventor: Michael Tkachuk
-
Publication number: 20130248736Abstract: In one aspect of the disclosure, a gas sensor is provided, comprising: a chamber for containing a gas sample in use, and a radiation source adapted to emit radiation within a first waveband. A photoluminescent material, upon absorption of radiation of a first wavelength within the first waveband, emits radiation of a second wavelength, the photoluminescent material being responsive to the presence of a target gas species in the gas sample. The gas sensor further comprises a luminescence detector assembly. The luminescence detector assembly is adapted to detect radiation of the second wavelength and output a corresponding measurement signal related to the concentration of the target gas species. An optics assembly is adapted to receive radiation emitted by the radiation source and to converge the radiation towards a location at which the luminescence detector assembly cannot receive radiation.Type: ApplicationFiled: March 21, 2012Publication date: September 26, 2013Applicant: BAH Holdings LLCInventor: Michael Tkachuk
-
Publication number: 20130037854Abstract: A photodetector is provided, comprising: a radiation-absorbing semiconductor region and a collection semiconductor region separated by and each in contact with a barrier semiconductor region; wherein, at least in the absence of an applied bias voltage, the band gap between the valence band energy and the conduction band energy of the barrier semiconductor region is offset from the band gap between the valence band energy and the conduction band energy of the radiation-absorbing semiconductor region so as to form an energy barrier between the radiation-absorbing semiconductor region and the collection semiconductor region which resists the flow of minority carriers from the radiation-absorbing semiconductor region to the collection semiconductor region. Also provided is a method of manufacturing a photodetector.Type: ApplicationFiled: August 10, 2011Publication date: February 14, 2013Applicant: BAH Holdings LLCInventor: Michael TKACHUK
-
Publication number: 20120057161Abstract: A gas or particulate sensor is provided for the detection of at least two target gases and/or particulates. The sensor comprises: a chamber for containing a gas sample under test; a first optical measurement channel configured for the detection of a first target gas or particulate within the gas sample, and a second optical measurement channel configured for the detection of a second target gas or particulate within the gas sample, each optical measurement channel comprising a respective optopair which comprises a radiation source adapted to emit radiation and a radiation detector adapted to output a signal in response to detected radiation; and focusing optics able to form an image of an object.Type: ApplicationFiled: August 24, 2011Publication date: March 8, 2012Applicant: BAH Holdings LLCInventors: Michael Tkachuk, Michael Gouzman
-
Publication number: 20110116079Abstract: An optical absorption gas analyser is provided for determining the concentration of a target gas in a sample, comprising: a chamber for containing the sample in use; an optopair, comprising a light emitting diode (LED) arranged to emit radiation into the chamber and a photovoltaic radiation detector, arranged to detect radiation transmitted through the chamber from the LED and to output a corresponding detection signal SS; a temperature sensor arranged in thermal contact with the LED and the photovoltaic radiation detector, and to output a temperature signal T representing the temperature of the optopair; a memory having stored therein data representative of the baseline detection signal ST output by the optopair in the absence of the target gas as a function of the temperature of the optopair across a range of temperatures; and a processor adapted to generate a differential detection signal SA indicative of the concentration of target gas in the sample by retrieving from the memory the baseline detection sigType: ApplicationFiled: November 11, 2010Publication date: May 19, 2011Applicant: BAH Holdings LLCInventor: Michael Tkachuk
-
Patent number: 7796265Abstract: An optical absorption gas analyzer for determining the concentration of a target gas in a sample is disclosed. The analyzer comprises a chamber for containing the sample in use; a radiation source assembly arranged to emit radiation into the chamber; a first radiation detector assembly arranged to detect radiation transmitted along a first optical path through the chamber and a second radiation detector assembly arranged to detect radiation transmitted along a second optical path through the chamber, wherein the length of the second optical path which the sample can intercept is shorter than that of the first optical path. The analyzer further comprises a processor adapted to generate a sensing signal SS based on the detected radiation transmitted along the first optical path and a reference signal SR based on the detected radiation transmitted along the second optical path.Type: GrantFiled: April 24, 2008Date of Patent: September 14, 2010Assignee: BAH Holdings LLCInventor: Michael Tkachuk
-
Publication number: 20090268204Abstract: An optical absorption gas analyser for determining the concentration of a target gas in a sample is disclosed. The analyser comprises a chamber for containing the sample in use; a radiation source assembly arranged to emit radiation into the chamber; a first radiation detector assembly arranged to detect radiation transmitted along a first optical path through the chamber and a second radiation detector assembly arranged to detect radiation transmitted along a second optical path through the chamber, wherein the length of the second optical path which the sample can intercept is shorter than that of the first optical path. The analyser further comprises a processor adapted to generate a sensing signal SS based on the detected radiation transmitted along the first optical path and a reference signal SR based on the detected radiation transmitted along the second optical path.Type: ApplicationFiled: April 24, 2008Publication date: October 29, 2009Applicant: BAH Holdings LLCInventor: Michael Tkachuk
-
Publication number: 20090257064Abstract: An optical absorption spectrometer is provided for determining the concentration of a substance within a sample. The optical absorption spectrometer comprises a first radiation source for supplying radiation to the sample to be measured; at least one cavity for containing the sample during measurement; and a detector assembly for detecting radiation transmitted along first and second optical paths through the sample, the length of the first optical path being greater than that of the second optical path.Type: ApplicationFiled: May 19, 2009Publication date: October 15, 2009Applicant: BAH Holdings LLCInventor: Michael Tkachuk
-
Patent number: 7570360Abstract: An optical absorption spectrometer is provided for determining the concentration of a substance within a sample. The optical absorption spectrometer comprises a first radiation source for supplying radiation to the sample to be measured; at least one cavity for containing the sample during measurement; and a detector assembly for detecting radiation transmitted along first and second optical paths through the sample, the length of the first optical path being greater than that of the second optical path.Type: GrantFiled: February 1, 2007Date of Patent: August 4, 2009Assignee: Bah Holdings, LLCInventor: Michael Tkachuk