Patents by Inventor Michael TSIPURSKY

Michael TSIPURSKY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240024251
    Abstract: A unique class of perfluorocarbon-free Dextran-based oxygen nanobubbles (DONBs) and formulations thereof. The critical components in the formulation are chosen among the U.S. Food, and Drug Administration's (FDA) approved compounds, which provide a biocompatible environment for incorporating pharmaceutical agents. Moreover, the nanobubbles are fabricated with simple sonication and homogenization method that easily fulfills the current good manufacturing practices (cGMP) requirements, which will promote scaleup production for commercial manufacturing. The formulated DONBs release oxygen over an extended period to keep the partial pressure of oxygen within the inner retina high and thus preserve retinal tissue from ischemia.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 25, 2024
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Joseph Maria Kumar IRUDAYARAJ, Muhammad FAYYAZ, Michael TSIPURSKY, Wen REN
  • Publication number: 20230372581
    Abstract: Herein is described an oxygen nanobubbles-embedded hydrogel (ONB-G) with carbopol for oxygenation of wounds to accelerate the wound healing process. We integrate carbopol hydrogel and dextran-based ONBs, to prepare ONB-G that can hold oxygen and release it to accelerate wound healing. Oxygen release tests showed that the proposed ONB-G could maintain oxygen in the hydrogels for up to 34 days. Also, fluorescence studies indicated that the ONB-G could maintain the high oxygen levels for up to 8 weeks. Histological evaluation of tissues with a pig model with incision and punch wounds showed that treatment with ONB-G exhibited improved healing compared with hydrogel without ONBs or treated without gel. Our studies show that dextran-shell ONBs embedded in a gel (ONB-G) has the potential to accelerate wound healing given its oxygen holding capacity and release properties.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Inventors: Joseph Maria Kumar IRUDAYARAJ, Wen REN, Michael TSIPURSKY