Patents by Inventor Michael Twieg

Michael Twieg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125877
    Abstract: Systems and methods for operating a magnetic resonance imaging (MRI) system are provided. The MRI system includes a magnetics system and a power system configured to provide power to at least some of the magnetics system. The power system includes an energy storage device and a power supply configured to receive mains electricity. The MRI system also includes at least one controller configured to control the MRI system to operate in accordance with a pulse sequence at least in part by generating, by using power supplied by the power supply and supplemental power supplied by the energy storage device, at least one gradient field using at least one gradient coil of the magnetics system.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Applicant: Hyperfine Operations, Inc.
    Inventor: Michael Twieg
  • Patent number: 11860255
    Abstract: Systems and methods for operating a magnetic resonance imaging (MRI) system are provided. The MRI system includes a magnetics system and a power system configured to provide power to at least some of the magnetics system. The power system includes an energy storage device and a power supply configured to receive mains electricity. The MRI system also includes at least one controller configured to control the MRI system to operate in accordance with a pulse sequence at least in part by generating, by using power supplied by the power supply and supplemental power supplied by the energy storage device, at least one gradient field using at least one gradient coil of the magnetics system.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 2, 2024
    Assignee: Hyperfine Operations, Inc.
    Inventor: Michael Twieg
  • Patent number: 11796613
    Abstract: The present disclosure provides techniques for using opto-isolator circuitry to control switching circuitry configured to be coupled to a radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system. In some embodiments, opto-isolator circuitry described herein may be configured to galvanically isolate switch controllers of the MRI system from the switching circuitry and/or provide feedback across an isolation barrier. Some embodiments provide an apparatus including switching circuitry configured to be coupled to an RF coil of an MRI system and a drive circuit that includes opto-isolator circuitry configured to control the switching circuitry. Some embodiments provide an MRI system that includes an RF coil configured to, when operated, transmit and/or receive RF signals to and/or from a field of view of the MRI system, switching circuitry coupled to the RF coil, and a drive circuit that includes opto-isolator circuitry configured to control the switching circuitry.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 24, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventor: Michael Twieg
  • Patent number: 11422216
    Abstract: Systems and methods for generating a gradient waveform for use by a low-field MRI system to generate a gradient magnetic field are provided herein. The gradient waveform can be determined using first information indicative of the gradient waveform and second information indicative of hardware constraints of the low-field MRI system including a maximum voltage of the gradient power amplifier, a maximum slew rate of the gradient coil, a resistance of the gradient coil, and an inductance of the gradient coil. In some embodiments, the gradient waveform can be a trapezoidal gradient waveform determined to have a non-linear ramp-up portion and/or a non-linear ramp-down portion.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 23, 2022
    Assignee: Hyperfine Operations, Inc.
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus, Michael Twieg
  • Patent number: 11415651
    Abstract: Described herein are power components that may facilitate efficient, low noise operation of low-field MRI systems. In some embodiments, the power components may include switching power converters configured to switch in a manner that reduces or eliminates noise within a desired frequency band (e.g., the Larmor frequency band) due to harmonics of the switching frequency. For example, the desired frequency band may be positioned between adjacent integer harmonics of the switching frequency. In some embodiments, harmonic components generated by multiple switching power converters may destructively interfere with one another, reducing or eliminating the amplitude of the harmonic components of the switching frequency that reside in the desired frequency band. In some embodiments, the power components may include switching power converters configured in parallel without the need for active current balancing circuitry.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 16, 2022
    Assignee: Hyperfine Operations, Inc.
    Inventor: Michael Twieg
  • Publication number: 20220187395
    Abstract: The present disclosure provides techniques for using opto-isolator circuitry to control switching circuitry configured to be coupled to a radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system. In some embodiments, opto-isolator circuitry described herein may be configured to galvanically isolate switch controllers of the MRI system from the switching circuitry and/or provide feedback across an isolation barrier. Some embodiments provide an apparatus including switching circuitry configured to be coupled to an RF coil of an MRI system and a drive circuit that includes opto-isolator circuitry configured to control the switching circuitry. Some embodiments provide an MRI system that includes an RF coil configured to, when operated, transmit and/or receive RF signals to and/or from a field of view of the MRI system, switching circuitry coupled to the RF coil, and a drive circuit that includes opto-isolator circuitry configured to control the switching circuitry.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 16, 2022
    Applicant: Hyperfine, Inc.
    Inventor: Michael Twieg
  • Publication number: 20220075015
    Abstract: Systems and methods for operating a magnetic resonance imaging (MRI) system are provided. The MRI system includes a magnetics system and a power system configured to provide power to at least some of the magnetics system. The power system includes an energy storage device and a power supply configured to receive mains electricity. The MRI system also includes at least one controller configured to control the MRI system to operate in accordance with a pulse sequence at least in part by generating, by using power supplied by the power supply and supplemental power supplied by the energy storage device, at least one gradient field using at least one gradient coil of the magnetics system.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 10, 2022
    Applicant: Hyperfine, Inc.
    Inventor: Michael Twieg
  • Patent number: 11181595
    Abstract: Systems and methods are provided for acquiring imaging data from one or more resonance species that simultaneously produce individual magnetic resonance signals in a plurality of different slices. The data is acquired by simultaneously exciting, using a pTX RF coil array, a plurality of different slices such that at least some of the plurality of different slices are excited by transmitting RF energy from a subset of transmit channels in the pTX RF coil array. The method also includes comparing the data to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species based, at least in part, on matching the data to a set of known signal evolutions stored in the dictionary. The method includes producing an image for each of the plurality of different slice locations, at least in part, on the quantitative values.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 23, 2021
    Assignee: Case Western Reserve University
    Inventors: Bhairav Bipin Mehta, Simone Coppo, Michael Twieg, Mark A. Griswold
  • Publication number: 20210302519
    Abstract: Systems and methods for generating a gradient waveform for use by a low-field MRI system to generate a gradient magnetic field are provided herein. The gradient waveform can be determined using first information indicative of the gradient waveform and second information indicative of hardware constraints of the low-field MRI system including a maximum voltage of the gradient power amplifier, a maximum slew rate of the gradient coil, a resistance of the gradient coil, and an inductance of the gradient coil. In some embodiments, the gradient waveform can be a trapezoidal gradient waveform determined to have a non-linear ramp-up portion and/or a non-linear ramp-down portion.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 30, 2021
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus, Michael Twieg
  • Publication number: 20210302518
    Abstract: Systems and methods for generating a gradient waveform for use by a low-field MRI system to generate a gradient magnetic field are provided herein. The gradient waveform can be determined using first information indicative of the gradient waveform and second information indicative of hardware constraints of the low-field MRI system including a maximum voltage of the gradient power amplifier, a maximum slew rate of the gradient coil, a resistance of the gradient coil, and an inductance of the gradient coil. In some embodiments, the gradient waveform can be a trapezoidal gradient waveform determined to have a non-linear ramp-up portion and/or a non-linear ramp-down portion.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 30, 2021
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus, Michael Twieg
  • Publication number: 20210173028
    Abstract: Described herein are power components that may facilitate efficient, low noise operation of low-field MRI systems. In some embodiments, the power components may include switching power converters configured to switch in a manner that reduces or eliminates noise within a desired frequency band (e.g., the Larmor frequency band) due to harmonics of the switching frequency. For example, the desired frequency band may be positioned between adjacent integer harmonics of the switching frequency. In some embodiments, harmonic components generated by multiple switching power converters may destructively interfere with one another, reducing or eliminating the amplitude of the harmonic components of the switching frequency that reside in the desired frequency band. In some embodiments, the power components may include switching power converters configured in parallel without the need for active current balancing circuitry.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 10, 2021
    Inventor: Michael Twieg
  • Publication number: 20210123997
    Abstract: Systems and methods are provided for acquiring imaging data from one or more resonance species that simultaneously produce individual magnetic resonance signals in a plurality of different slices. The data is acquired by simultaneously exciting, using a pTX RF coil array, a plurality of different slices such that at least some of the plurality of different slices are excited by transmitting RF energy from a subset of transmit channels in the pTX RF coil array. The method also includes comparing the data to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species based, at least in part, on matching the data to a set of known signal evolutions stored in the dictionary. The method includes producing an image for each of the plurality of different slice locations, at least in part, on the quantitative values.
    Type: Application
    Filed: April 6, 2018
    Publication date: April 29, 2021
    Inventors: Bhairav Bipin Mehta, Simone Coppo, Michael Twieg, Mark A. Griswold
  • Patent number: 10511261
    Abstract: An apparatus, a system, and a chip are provided for improving RF system performance in MRI systems. The apparatus includes a radio-frequency (RF) coil array disposed at least partially in a coil housing, where the RF coil array may include at least one coil configured to receive magnetic resonance (MR) RF signals. The apparatus also includes a mixer disposed in the coil housing and electronically connected to the RF coil array, where the mixer converts MR RF signals from the RF coil array to intermediate-frequency (IF) signals. An electronic amplifier is disposed in the coil housing. The electronic amplifier is electronically connected to the mixer and is configured to amplify IF signals from the mixer to amplified IF signals.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 17, 2019
    Assignee: Case Western Reserve University
    Inventors: Michael Twieg, Mark A. Griswold, Soumyajit Mandal
  • Publication number: 20170293003
    Abstract: An apparatus, a system, and a chip are provided for improving RF system performance in MRI systems. The apparatus includes a radio-frequency (RF) coil array disposed at least partially in a coil housing, where the RF coil array may include at least one coil configured to receive magnetic resonance (MR) RF signals. The apparatus also includes a mixer disposed in the coil housing and electronically connected to the RF coil array, where the mixer converts MR RF signals from the RF coil array to intermediate-frequency (IF) signals. An electronic amplifier is disposed in the coil housing. The electronic amplifier is electronically connected to the mixer and is configured to amplify IF signals from the mixer to amplified IF signals.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 12, 2017
    Inventors: Michael Twieg, Mark A. Griswold, Soumyajit Mandal
  • Patent number: 9747789
    Abstract: Example systems, apparatus, circuits, and other embodiments described herein concern parallel transmission in MRI. One example apparatus includes at least two enhanced mode gallium nitride (eGaN) based field effect transistors (FETs) that are connected by a coil that includes an LC (inductance-capacitance) leg. The apparatus includes a controller that inputs a signal to the eGaN FETs to control the production of an output analog radio frequency (RF) signal. The LC leg selectively alters the output analog RF signal. The analog RF signal is used in parallel magnetic resonance imaging (MRI) transmission. One embodiment provides an MRI transmit coil with switched-mode current-source amplification provided by a gallium nitride FET.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: August 29, 2017
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Mark Griswold, Michael Twieg
  • Patent number: 9536423
    Abstract: Example systems, apparatus, circuits, and other embodiments described herein concern acquiring telemetry data from an MR system and providing the telemetry data via fiber optic cable. One example apparatus includes a telemetry signal acquisition element (e.g., circuit, circuit component) that is configured to acquire a telemetry signal from a component in the MR apparatus. The component may be, for example, a transmit coil or an on-coil amplifier. The example apparatus also includes a fiber optic cable that is configured to carry an output signal from the MR apparatus through a field produced by the MR apparatus. The example apparatus also includes a telemetry signal output element that is configured to produce the output signal from the telemetry signal and to transmit the output signal via the fiber optic cable.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 3, 2017
    Assignee: Case Western Reserve University
    Inventors: Mark Griswold, Michael Twieg
  • Publication number: 20140292324
    Abstract: Example systems, apparatus, circuits, and other embodiments described herein concern acquiring telemetry data from an MR system and providing the telemetry data via fiber optic cable. One example apparatus includes a telemetry signal acquisition element (e.g., circuit, circuit component) that is configured to acquire a telemetry signal from a component in the MR apparatus. The component may be, for example, a transmit coil or an on-coil amplifier. The example apparatus also includes a fiber optic cable that is configured to carry an output signal from the MR apparatus through a field produced by the MR apparatus. The example apparatus also includes a telemetry signal output element that is configured to produce the output signal from the telemetry signal and to transmit the output signal via the fiber optic cable.
    Type: Application
    Filed: October 14, 2013
    Publication date: October 2, 2014
    Inventors: Mark Griswold, Michael Twieg
  • Publication number: 20140292327
    Abstract: Example systems, apparatus, circuits, and other embodiments described herein concern parallel transmission in MRI. One example apparatus includes at least two enhanced mode gallium nitride (eGaN) based field effect transistors (FETs) that are connected by a coil that includes an LC (inductance-capacitance) leg. The apparatus includes a controller that inputs a signal to the eGaN FETs to control the production of an output analog radio frequency (RF) signal. The LC leg selectively alters the output analog RF signal. The analog RF signal is used in parallel magnetic resonance imaging (MRI) transmission. One embodiment provides an MRI transmit coil with switched-mode current-source amplification provided by a gallium nitride FET.
    Type: Application
    Filed: October 14, 2013
    Publication date: October 2, 2014
    Inventors: Mark Griswold, Michael Twieg