Patents by Inventor Michael V. Aquilino

Michael V. Aquilino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140015092
    Abstract: A method for formation of a sealed shallow trench isolation (STI) region for a semiconductor device includes forming a STI region in a substrate, the STI region comprising a STI fill; forming a sealing recess in the STI fill of the STI region; and forming a sealing layer in the sealing recess over the STI fill.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael V. Aquilino, Xiang Hu, Daniel J. Jaeger, Byeong Y. Kim, Yong M. Lee, Ying Li, Reinaldo A. Vega
  • Patent number: 8623713
    Abstract: A trench isolation structure and method of forming the trench isolation structure are disclosed. The method includes forming a shallow trench isolation (STI) structure having an overhang and forming a gate stack. The method further includes forming source and drain recesses adjacent to the STI structure and the gate stack. The source and drain recesses are separated from the STI structure by substrate material. The method further includes forming epitaxial source and drain regions associated with the gate stack by filling the source and drain recesses with stressor material.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michael V. Aquilino, Reinaldo A. Vega
  • Publication number: 20130069160
    Abstract: A trench isolation structure and method of forming the trench isolation structure are disclosed. The method includes forming a shallow trench isolation (STI) structure having an overhang and forming a gate stack. The method further includes forming source and drain recesses adjacent to the STI structure and the gate stack. The source and drain recesses are separated from the STI structure by substrate material. The method further includes forming epitaxial source and drain regions associated with the gate stack by filling the source and drain recesses with stressor material.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael V. AQUILINO, Reinaldo A. VEGA
  • Publication number: 20120292719
    Abstract: A device includes a substrate with a device region surrounded by an isolation region, in which the device region includes edge portions along a width of the device region and a central portion. The device further includes a gate layer disposed on the substrate over the device region, in which the gate layer includes a graded thickness in which the gate layer at edge portions of the device region has a thickness TE that is different from a thickness TC at the central portion of the device region.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Young Way TEH, Michael V. AQUILINO, Arifuzzaman (Arif) SHEIKH, Yun Ling TAN, Hao ZHANG, Deleep R. NAIR, Jinghong H. (John) LI
  • Publication number: 20120187522
    Abstract: A substrate is provided. An STI trench is formed in the substrate. A fill material is formed in the STI trench and then planarized. The substrate is exposed to an oxidizing ambient, growing a liner at a bottom and sidewalls of the STI trench. The liner reduces the Vt-W effect in high-k metal gate devices.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael V. Aquilino, Christopher V. Baiocco, Richard A. Conti, Daniel J. Jaeger, Vijay Narayanan
  • Patent number: 8053301
    Abstract: Silicon germanium (SiGe) is epitaxially grown on a silicon channel above nFET and pFET regions of a substrate. SiGe is removed above the nFET regions. A device includes a silicon channel above the nFET regions and a SiGe channel above the pFET regions.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel J. Jaeger, Michael V. Aquilino, Christopher V. Baiocco
  • Publication number: 20100244198
    Abstract: Silicon germanium (SiGe) is epitaxially grown on a silicon channel above nFET and pFET regions of a substrate. SiGe is removed above the nFET regions. A device includes a silicon channel above the nFET regions and a SiGe channel above the pFET regions.
    Type: Application
    Filed: March 30, 2009
    Publication date: September 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Jaeger, Michael ` V. Aquilino, Christopher V. Baiocco