Patents by Inventor Michael V. Chobotov

Michael V. Chobotov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8900288
    Abstract: This invention is a system for the treatment of body passageways; in particular, vessels with vascular disease. The system includes an endovascular graft with a low-profile delivery configuration and a deployed configuration in which it conforms to the morphology of the vessel or body passageway to be treated as well as various connector members and stents. The graft is made from an inflatable graft body section and may be bifurcated. One or more inflatable cuffs may be disposed at either end of the graft body section. At least one inflatable channel is disposed between and in fluid communication with the inflatable cuffs.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: December 2, 2014
    Assignee: Trivascular, Inc.
    Inventors: Michael V. Chobotov, Robert G. Whirley
  • Publication number: 20140350656
    Abstract: The invention provides a stent-graft system comprising a graft member and a stent having a connection end interconnected with the graft member and a free end opposed thereto. A belt retaining structure is provided at the stent free end. A belt is releasably retained in the belt retaining structure and is configured to constrain the stent free end independent of the stent connection end. A method of securing at least one end of a stent-graft within a vessel is also provided.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 27, 2014
    Applicant: TRIVASCULAR, INC.
    Inventors: Isaac J. ZACHARIAS, Diego ARISTIZABAL, Michael MOHN, Michael V. CHOBOTOV
  • Publication number: 20140324150
    Abstract: An endovascular delivery system includes a bifurcated prosthesis including a main tubular body having an open end and opposed ipsilateral and contralateral legs and a delivery catheter for deployment of the prosthesis. The delivery catheter includes an elongate outer tubular sheath, an elongate inner tubular member releasably disposed within the elongate outer tubular sheath and an elongate crossover guidewire slidably disposed within the elongate outer tubular sheath and extending through the ipsilateral and contralateral legs.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 30, 2014
    Inventors: William Patrick Stephens, Michael V. Chobotov
  • Publication number: 20140316511
    Abstract: An endovascular graft, which is configured to conform to the morphology of a vessel to be treated, includes a tubular ePTFE structure; an inflatable ePTFE structure disposed over at least a portion of the ePTFE tubular structure; and an injection port in fluid communication with the inflatable ePTFE structure for inflation of the inflatable ePTFE structure with an inflation medium. The inflatable ePTFE structure may be longitudinally disposed over the tubular ePTFE structure. The ePTFE structure may be a bifurcated structure having first and second bifurcated tubular structures, where the inflatable ePTFE structure is disposed over at least a portion of the first and second bifurcated tubular structures.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventor: Michael V. Chobotov
  • Patent number: 8864814
    Abstract: A flexible low profile delivery system for delivery of an expandable intracorporeal device, specifically, an endovascular graft, which has at least one belt circumferentially disposed about the device in a constraining configuration. The belt is released by a release member, such as a release wire, by retracting the wire from looped ends of the belt. Multiple belts can be used and can be released sequentially so as to control the order of release and placement of the endovascular graft. An outer protective sheath may be disposed about the endovascular graft while in a constrained state which must first be refracted or otherwise removed prior to release of the graft from a constrained state. The delivery system can be configured for delivery over a guiding device such as a guidewire. The delivery system can also be configured for delivery of bifurcated intracorporeal devices.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Trivascular, Inc.
    Inventor: Michael V. Chobotov
  • Patent number: 8801769
    Abstract: An endovascular graft, which is configured to conform to the morphology of a vessel to be treated, includes a tubular ePTFE structure; an inflatable ePTFE structure disposed over at least a portion of the ePTFE tubular structure; and an injection port in fluid communication with the inflatable ePTFE structure for inflation of the inflatable ePTFE structure with an inflation medium. The inflatable ePTFE structure may be longitudinally disposed over the tubular ePTFE structure. The ePTFE structure may be a bifurcated structure having first and second bifurcated tubular structures, where the inflatable ePTFE structure is disposed over at least a portion of the first and second bifurcated tubular structures.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: August 12, 2014
    Assignee: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Patent number: 8783316
    Abstract: A device and method for the manufacture of medical devices, specifically, endovascular grafts, or sections thereof. Layers of fusible material are disposed upon a shape forming member and seams formed between the layers in a configuration that can produce inflatable channels in desired portions of the graft. After creation of the seams, the fusible material of the inflatable channels may be fixed while the channels are in an expanded state. A five axis robotic seam forming apparatus may be used to create the seams in the layers of fusible material.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: July 22, 2014
    Assignee: TriVascular, Inc.
    Inventors: Michael V. Chobotov, Patrick Stephens
  • Publication number: 20140194973
    Abstract: Systems and methods for managing aneurysms provide additional support to an aneurysmal wall by disposing a flexible vascular liner against or in close proximity to the aneurysmal wall. The liner is flexibly expansive to conform to the wall of the aneurysm. The liner inhibits failure of the aneurysmal wall. The liner may also inhibit further growth in diameter of the aneurysm. Aneurysms in single arteries or near branched arteries may be supported by a flexible vascular liner.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Applicant: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Publication number: 20140194970
    Abstract: An endovascular delivery system includes a pre-loaded, small guide wire for snaring via the contralateral side of a bifurcated prosthesis for deployment of a graft extension to the contralateral side of the bifurcated prosthesis. The pre-loaded guidewire avoids a cannulation step in the deployment of typical bifurcated stent grafts. Deployment methods using the pre-loaded guidewire and endovascular grafts having a pre-routed lumen for a secondary contralateral access guidewire are also described.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Applicant: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Publication number: 20140135899
    Abstract: A stent-graft system comprising a graft member and a stent having a connection end interconnected with the graft member and a free end opposed thereto. The stent includes a plurality of struts extending between the connection end and the free end and at least two of the struts having different lengths such that the free end has a nonuniform profile. A method of securing at least one end of a stent-graft within a vessel is also provided.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: TRIVASCULAR, INC.
    Inventor: Michael V. CHOBOTOV
  • Patent number: 8709065
    Abstract: An endovascular graft includes a tubular graft body section; a radially expandable stent extending from and affixed to the graft body section. The stent includes a proximal end, a distal end and a serpentine ring configuration having a plurality of struts and apices. The stent further includes at least one barb integrally formed as an extension of each strut extending distally from a position on the strut that is distal of an adjacent proximal apex, where the at least one integrally formed barb is formed as the extension of each strut with no joint or other connection thereat.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: April 29, 2014
    Assignee: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Publication number: 20140100650
    Abstract: Systems and methods for treating diseased bodily lumens involving branched lumen deployment sites include a main graft or stent-graft deployable in a main artery and a vent device or stent-graft deployable in a branch artery to maintain blood flow through the main artery and from the main artery to the branch artery. Systems and methods for treating diseased bodily lumens involving branched lumen deployment sites may also include a main graft or stent-graft deployable in the main artery, a chimney graft or stent-graft deployable in both branch artery and the main artery to the branch artery and a gutter-sealing device associated with the chimney graft to prevent flow of blood among the chimney graft, the main graft and a wall of the main artery.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 10, 2014
    Applicant: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Patent number: 8666714
    Abstract: A system and method of developing better-designed medical devices, particularly cardiovascular stents and endovascular grafts. The system comprises a geometry generator, a mesh generator, a stress/strain/deformation analyzer, and a visualization tool. Using analysis, preferably non-linear analysis, the stress/strain/deformation analyzer determines the predicted stresses, strains, and deformations on the candidate medical device. Such stresses, strains, and deformations may optionally be simulated visually using a visualization tool.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Trivascular, Inc.
    Inventors: Robert G. Whirley, Michael V. Chobotov
  • Patent number: 8663309
    Abstract: A stent-graft system comprising a graft member and a stent having a connection end interconnected with the graft member and a free end opposed thereto. The stent includes a plurality of struts extending between the connection end and the free end and at least two of the struts having different lengths such that the free end has a nonuniform profile. A method of securing at least one end of a stent-graft within a vessel is also provided.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 4, 2014
    Assignee: Trivascular, Inc.
    Inventor: Michael V. Chobotov
  • Publication number: 20130338752
    Abstract: An endovascular delivery system for an endovascular prosthesis includes a radiopaque marker system for accurate delivery of the prosthesis. The radiopaque marker system is disposed within a prosthesis or stent holder within the delivery system. The radiopaque marker system includes a plurality of radiopaque markers that provide different views rotation of the prosthesis or stent holder.
    Type: Application
    Filed: March 14, 2013
    Publication date: December 19, 2013
    Applicant: TRIVASCULAR, INC.
    Inventors: Mark Geusen, Michael V. Chobotov
  • Publication number: 20130338760
    Abstract: An endovascular delivery system includes a bifurcated and inflatable prosthesis including a main tubular body having an open end and opposed ipsilateral and contralateral legs defining a graft wall therein between. A tether is disposed securably disposed to the contralateral leg, and the contralateral leg is releasably restrained towards the ipsilateral leg tether to prevent undesirable movement of the contralateral leg. A release wire within the endovascular delivery system releasably retains the tether near the ipsilateral leg.
    Type: Application
    Filed: March 14, 2013
    Publication date: December 19, 2013
    Applicant: TriVascular, Inc.
    Inventors: Diego Aristizabal, Michael V. Chobotov
  • Publication number: 20130268048
    Abstract: Some embodiments relate in part to endovascular prostheses and delivery catheter systems and methods for deploying same. Embodiments may be directed more specifically to graft bodies having self-expanding members, including inflatable graft bodies, and catheters and methods for deploying same within the body of a patient.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Applicant: TriVascular, Inc.
    Inventors: James Watson, Cheng Li, Reva Morehous, Teresa Woodson, Michael V. Chobotov, Carl Poppe
  • Publication number: 20130268056
    Abstract: A tubular prosthetic device for implantation into a body lumen includes a first part including a tubular lumen and a second part including an attachment member. The second part is secured to the first part via various configurations, where the device is capable of being reduced to a diameter less than the diameter of traditional devices, for ease of use during implantation. Methods of using the device are also provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Applicant: TRIVASCULAR, INC.
    Inventors: Michael V. Chobotov, Jenine S. Vinluan, Mary Jane Marston
  • Publication number: 20130261734
    Abstract: Stent-grafts for treating thoracic aortic aneurysms and abdominal aortic aneurysms include graft portions having inflatable channels and graft extensions. The graft extensions include an undulating wire stent and porous, but substantially fluid impermeable, polytetrafluoroethylene (PTFE) graft materials.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: TRIVASCULAR, INC.
    Inventors: Sarah Young, Cheng Li, Michael V. Chobotov, Patrick Stephens, Robert G. Whirley
  • Patent number: 8361136
    Abstract: An endovascular graft, which is configured to conform to the morphology of a vessel to be treated, includes a tubular ePTFE structure; an inflatable ePTFE structure disposed over at least a portion of the ePTFE tubular structure; and an injection port in fluid communication with the inflatable ePTFE structure for inflation of the inflatable ePTFE structure with an inflation medium. The inflatable ePTFE structure may be longitudinally disposed over the tubular ePTFE structure. The ePTFE structure may be a bifurcated structure having first and second bifurcated tubular structures, where the inflatable ePTFE structure is disposed over at least a portion of the first and second bifurcated tubular structures.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 29, 2013
    Assignee: TriVascular, Inc.
    Inventor: Michael V. Chobotov