Patents by Inventor Michael V. Orlov

Michael V. Orlov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925807
    Abstract: Pacemaker-initiated atrial fibrillation during competitive atrial pacing is a common arrhythmia with potentially serious consequences The novel pacing method proposes a novel way to automatically detect and diagnose competitive atrial pacing, and to deliver an intervention via a pacing stimulus in the atrium simultaneously with delivering a pacing stimulus in the ventricle, and doing this after a longer waiting period. By doing this, potentially hazardous scenarios causing atrial fibrillation in competitive atrial pacing are avoided, while the rhythm regularity and the synchrony between the upper and lower chambers of the heart are maintained. At the same time, the vicious cycle of retrograde conduction from the ventricle to the atrium—the culprit of the problem—is terminated and not allowed to reoccur for several subsequent cardiac cycles, thereby preventing the extended propagation of repetitive non-reentrant ventriculo-atrial synchrony.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 12, 2024
    Inventor: Michael V Orlov
  • Publication number: 20220080201
    Abstract: Pacemaker-initiated atrial fibrillation during competitive atrial pacing is a common arrhythmia with potentially serious consequences The novel pacing method proposes a novel way to automatically detect and diagnose competitive atrial pacing, and to deliver an intervention via a pacing stimulus in the atrium simultaneously with delivering a pacing stimulus in the ventricle, and doing this after a longer waiting period. By doing this, potentially hazardous scenarios causing atrial fibrillation in competitive atrial pacing are avoided, while the rhythm regularity and the synchrony between the upper and lower chambers of the heart are maintained. At the same time, the vicious cycle of retrograde conduction from the ventricle to the atrium—the culprit of the problem—is terminated and not allowed to reoccur for several subsequent cardiac cycles, thereby preventing the extended propagation of repetitive non-reentrant ventriculo-atrial synchrony.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventor: Michael V Orlov
  • Patent number: 8394029
    Abstract: The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: March 12, 2013
    Assignee: Biotronik CRM Patent AG
    Inventors: Jie Lian, Sharon Lefkov, Dirk Muessig, Christopher S. de Voir, Michael V. Orlov
  • Patent number: 7985185
    Abstract: Heart monitoring apparatus with sensing stage connectable to intracardiac electrode picking up electric potentials and adapted to process electric signals representing a time course of said potentials, a mechanical action detection stage adapted to generate a geometry signal having a time course reflecting heart chamber's geometry change, an evaluation unit connected to sensing stage and impedance measuring stage and adapted to determine a first and second fiducial point in the time course of said potentials and geometry signal, respectively, both fiducial points belonging to same heart cycle, and to determine a measured time delay between said fiducial points. Evaluation unit adapted to repeat said determined time delay to determine plurality of measured time delays and variance thereof or divergence of the statistical properties of cycle times based on said time course of said electric potentials versus cycle times based on said time course reflecting a change of a heart chamber's geometry.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: July 26, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Christopher S. De Voir, Dirk Muessig, Sharon Lefkov, Michael V. Orlov
  • Publication number: 20090312649
    Abstract: The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 17, 2009
    Inventors: Jie Lian, Sharon Lefkov, Dirk Muessig, Christopher S. de Voir, Michael V. Orlov
  • Publication number: 20090299203
    Abstract: Heart monitoring apparatus with sensing stage connectable to intracardiac electrode picking up electric potentials and adapted to process electric signals representing a time course of said potentials, a mechanical action detection stage adapted to generate a geometry signal having a time course reflecting heart chamber's geometry change, an evaluation unit connected to sensing stage and impedance measuring stage and adapted to determine a first and second fiducial point in the time course of said potentials and geometry signal, respectively, both fiducial points belonging to same heart cycle, and to determine a measured time delay between said fiducial points. Evaluation unit adapted to repeat said determined time delay to determine plurality of measured time delays and variance thereof or divergence of the statistical properties of cycle times based on said time course of said electric potentials versus cycle times based on said time course reflecting a change of a heart chamber's geometry.
    Type: Application
    Filed: June 3, 2008
    Publication date: December 3, 2009
    Inventors: Christopher S. DE VOIR, Dirk Muessig, Sharon Lefkov, Michael V. Orlov