Patents by Inventor Michael Veith

Michael Veith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9863781
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: January 9, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Patent number: 9580611
    Abstract: The aim of the invention is to create a composition for coating electric conductors which is significantly more resistant to partial discharges than prior art compositions while the produced insulating layer is highly extensible. Said aim is achieved by a composition comprising 1 to 50 percent by weight of microparticles that have a specifically adjusted electronic defect structure in the crystal lattice, resulting in greater polarizability of the valence electrons, and an organic and/or organic-inorganic matrix.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 28, 2017
    Assignee: Leibniz-Institut fuer neue Materialien gemeinnuetzige Gesellschaft mit beschraenkter Haftung
    Inventors: Sener Albayrak, Carsten Becker-Willinger, Michael Veith, Oral Cenk Aktas
  • Patent number: 9507320
    Abstract: The invention relates to a method for transferring surface structures such as interference layers, holograms, and other highly refractive optical microstructures to substrates. The aim of the invention is to devise a method which is used for transferring surface structures such as interference layers, holograms, and other highly refractive optical microstructures to substrates and can also be used in a high temperature range. The aim is achieved by a method comprising the following steps: a) a flexible intermediate support layer is applied to a support film as a release layer; b) an embossed sol is applied to the intermediate support layer and is provided with a surface structure; c) a stack encompassing a binder layer and the surface structure is produced; d) the support film is removed; e) the workpiece is thermally treated.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 29, 2016
    Assignee: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUETZIGE GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG
    Inventors: Peter William Oliveira, Bruno Schaefer, Christine Faller-Schneider, Michael Veith
  • Patent number: 9126848
    Abstract: A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 8, 2015
    Assignee: Leibniz-Insitut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Hechun Lin, Michael Veith
  • Patent number: 9063280
    Abstract: A method for producing coatings having anti-reflection properties uses a compound comprising at least one type of nanoparticle and at least one solvent. The compound is applied to a substrate and treated at various temperatures. Anti-reflection coatings can be obtained on temperature-sensitive materials such as PMMA or PET.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 23, 2015
    Assignee: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Mohammad Jilavi, Sakthivel Shanmugasundaram, Michael Veith
  • Patent number: 9052588
    Abstract: A composition for producing optical elements has a gradient structure, particularly for holographic applications, wherein the gradient structure is formed by a refractivity gradient. The composition is produced from a polymer and a light- and/or temperature-sensitive metal complex and the light- and/or temperature-sensitive metal complex is decomposed upon changing the local refractivity. The result is the formation of a refractivity gradient.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: June 9, 2015
    Assignee: Leibniz-Institut fuer Neue Marterialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Peter Koenig, Michael Veith, Omid Yazdani-Assl
  • Patent number: 9051470
    Abstract: A method for producing thin films, particularly for coating surfaces includes a) adding surface-active substances to flowable compositions comprising nanoscale inorganic particulate solids having polymerizable and/or polycondensable organic surface groups; b) forming one or more thin films stabilized by the accumulation of the surface-active substances at the interface(s), the forming of one or more thin films taking place through the generation of bubbles, foam, through the formation of minimal surfaces and/or through the wetting of surfaces; and c) solidifying the films by polymerization and/or polycondensation.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: June 9, 2015
    Assignee: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Michael Veith
  • Patent number: 9040154
    Abstract: Magnetic composite particles can be used as proppants and allow for deliberate heating by applying an alternating magnetic field.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 26, 2015
    Assignee: Neotechnology LLC
    Inventors: Peter Rogin, Peter William de Oliveira, Christian Wühr, Michael Veith, Douglas Espin
  • Publication number: 20150121990
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Application
    Filed: November 13, 2014
    Publication date: May 7, 2015
    Inventors: Wolfram BAUER, Johannes CLASSEN, Rainer WILLIG, Matthias MEIER, Burkhard KUHLMANN, Mathias REIMANN, Ermin ESCH, Hans-Dieter SCHWARZ, Michael VEITH, Christoph LANG, Udo-Martin GOMEZ
  • Publication number: 20150027543
    Abstract: The invention relates to a coating composition consisting of an oxide compound. The invention also relates to a method for producing a coating composition consisting of an oxide compound and to a method for coating substrates composed of metal, semiconductor, alloy, ceramic, quartz, glass or glass-type materials with coating compositions of this type. The invention further relates to the use of a coating composition according to the invention for coating metal, semiconductor, alloy, ceramic, quartz, glass and/or glass-type substrates.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Oral Cenk Aktas, Michael Veith, Sener Albayrak, Benny Siegert, Yann Patrick Wolf
  • Patent number: 8938364
    Abstract: A sensor device includes: a sensor module mounted on a conductor board; a sensitive element which is sensitive to a variable; a self-test control unit implementing a self-test program, the self-test control unit applying a self-test variable to the sensitive element, taking the self-test program into account; a detection unit detecting a characteristic of the sensitive element which is altered as a result of the applied self-test variable and providing an actual self-test response, taking the altered characteristic into account; and a comparator unit provided on or in the sensor module, the comparator unit comparing the actual self-test response to at least one specified setpoint self-test response and providing comparative information.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: January 20, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Patrick Goerlich, Riad Stefo, Wolfram Bauer, Rainer Willig, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Michael Baus, Gregor Wetekam, Michael Veith, Emma Abel, Wolfgang Fuerst
  • Patent number: 8911834
    Abstract: The invention relates to a coating composition consisting of an oxide compound. The invention also relates to a method for producing a coating composition consisting of an oxide compound and to a method for coating substrates composed of metal, semiconductor, alloy, ceramic, quartz, glass or glass-type materials with coating compositions of this type. The invention further relates to the use of a coating composition according to the invention for coating metal, semiconductor, alloy, ceramic, quartz, glass and/or glass-type substrates.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 16, 2014
    Assignee: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Oral Cenk Aktas, Michael Veith, Sener Albayrak, Benny Siegert, Yann Patrick Wolf
  • Patent number: 8910518
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Patent number: 8796018
    Abstract: The invention relates to the use of nanopatterned surfaces. It also relates to a method for enriching or isolating cellular subpopulations. To create a simple, versatile and specific method for enriching or isolating cellular subpopulations from a complex mixture, the invention proposes the use of nanopatterned surfaces for isolating and enriching cellular subpopulations from a complex mixture.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 5, 2014
    Assignee: Leibniz-Institut fuer Neue Materialien Gemeinneutzige Gesellschaft mit beschraenkter Haftung
    Inventors: Michael Veith, Frank Narz
  • Patent number: 8680179
    Abstract: The invention provides a composite composition comprising a cationically polymerizable organic resin, a cationic photoinitiator, a hydrolysate and/or condensate of at least one hydrolysable silane compound and inorganic nanoparticles. The composite composition is suitable for the preparation of patterned moulded articles or substrates having a patterned coating, in particular by photolithography. Micropatterns obtained show improved properties, such as a high shape stability and an excellent elastic modulus.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 25, 2014
    Assignees: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH, Canon Kabushiki Kaisha
    Inventors: Etsuko Hino, Mitsutoshi Noguchi, Norio Ohkuma, Yoshikazu Saito, Carsten Becker-Willinger, Pamela Kalmes, Michael Veith
  • Patent number: 8497051
    Abstract: A composition for producing optical elements having a gradient structure, particularly for holographic applications, is formed by a refractive index gradient. The composition is produced from one or more polymerizable and/or polycondensable monomers and at least one biological polymer. A potential difference is generated for the directed diffusion of the monomers by inducing a local polymerization or polycondensation. The result is the formation of a refractive index gradient.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 30, 2013
    Assignee: Leibniz-Institut fuer Neue Materialien Gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Michael Veith, Peter Koenig, Jenny Kampka, Anette Kraegeloh
  • Publication number: 20130101836
    Abstract: A substrate comprises a coating for converting radiation energy into heat, the coating comprising a one-dimensional composite structure. The coatings can be used in particular as absorbers, for example for solar collectors.
    Type: Application
    Filed: July 8, 2011
    Publication date: April 25, 2013
    Applicant: Leibniz-Institut Fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Oral Cenk Aktas, Michael Veith, Cagri Kaan Akkan, Juseok Lee, Marina Martinez Miró
  • Publication number: 20130068137
    Abstract: A method for producing coatings having anti-reflection properties uses a compound comprising at least one type of nanoparticle and at least one solvent. The compound is applied to a substrate and treated at various temperatures. Anti-reflection coatings can be obtained on temperature-sensitive materials such as PMMA or PET.
    Type: Application
    Filed: July 6, 2010
    Publication date: March 21, 2013
    Inventors: Peter de Oliveira, Mohammad Jilavi, Sakthivel Shanmugasundaram, Michael Veith
  • Publication number: 20130059132
    Abstract: A laminate includes two substrates that are connected by means of a bonding layer, the bonding layer enabling a one-dimensional composite structure. This enables a purely inorganic compound of different materials and a significantly improved connection when using adhesives.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 7, 2013
    Applicant: Leibniz-Institut fuer neue Materialien gemeinnuetzige GmbH
    Inventors: Oral Cenk Aktas, Michael Veith, Juseok Lee, Hakima Smail, Marina Martinez Miró
  • Patent number: 8389592
    Abstract: Optical elements, in particular for holographic applications, have a gradient structure formed by a refractive index gradient and include one or more organic polymers and at least one ionic liquid.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: March 5, 2013
    Assignee: Leibniz-Institut fuer Neue Materialien Gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Michael Veith, Peter Rogin, Hechun Lin, Marcus Geerkens