Patents by Inventor Michael W. Fountain

Michael W. Fountain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140072639
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: Dermazone Solutions, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 8597678
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: December 3, 2013
    Assignee: Dermazone Solutions, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 8545875
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 1, 2013
    Assignee: Dermazone Solutions, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 8545874
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 1, 2013
    Assignee: Dermazone Solutions, Inc.
    Inventor: Michael W. Fountain
  • Publication number: 20120195940
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 2, 2012
    Applicant: DERMAZONE SOLUTIONS INC.
    Inventor: Michael W. Fountain
  • Publication number: 20100239686
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Application
    Filed: May 3, 2010
    Publication date: September 23, 2010
    Applicant: Dermazone Solutions Inc.
    Inventor: Michael W. Fountain
  • Publication number: 20100173014
    Abstract: The instant invention discloses methods of preparing phospholipid delivery systems encapsulating one or more bio-affecting compounds, said methods comprising solubilizing a heterogeneous phospholipid mixture into a suitable organic solvent to form a concentrated formulation of phospholipids, wherein the phospholipids comprise a charged phospholipid species, and mixing the concentrated formulation with an aqueous solution comprising at least one bio-affecting compound. The instant invention also discloses methods of using a phospholipid delivery system encapsulating at least one bio-affecting compound for administration to an individual in need thereof.
    Type: Application
    Filed: May 24, 2007
    Publication date: July 8, 2010
    Applicant: Nanosolutions, LLC
    Inventor: Michael W. Fountain
  • Publication number: 20070154539
    Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.
    Type: Application
    Filed: December 22, 2006
    Publication date: July 5, 2007
    Inventor: Michael W. Fountain
  • Patent number: 5922350
    Abstract: Dehydrated liposomes are prepared by drying liposome preparations under reduced pressure in the presence of one or more protective sugars, e.g., the disaccharides trehalose and sucrose. Preferably, the protective sugars are present at both the inside and outside surfaces of the liposome membranes. Freezing of the liposome preparation prior to dehydration is optional. Alternatively, the protective sugar can be omitted if: (1) the liposomes are of the type which have multiple lipid layers; (2) the dehydration is done without prior freezing; and (3) the dehydration is performed to an end point which results in sufficient water being left in the preparation (e.g., at least 12 moles water/mole lipid) so that the integrity of a substantial portion of the multiple lipid layers is retained upon rehydration.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: July 13, 1999
    Assignee: The Liposome Company, Inc.
    Inventors: Andrew S. Janoff, Pieter R. Cullis, Marcel B. Bally, Michael W. Fountain, Richard S. Ginsberg, Michael J. Hope, Thomas D. Madden, Hugh P. Schieren, Regina L. Jablonski
  • Patent number: 5879703
    Abstract: A method for preparation of a shelf-stable precursor solution used to prepare a vaccine delivery system and useful for remote encapsulation of active ingredients is described. The vaccine delivery system utilizes solvent dilution microcarriers into which pathogen subunits are incorporated for delivering antigens to mucosal sites for stimulating imunoglobulin production.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: March 9, 1999
    Assignee: Fountain Pharmaceuticals, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 5837279
    Abstract: Dehydrated liposomes are prepared by drying liposome preparations under reduced pressure in the presence of one or more protective sugars, e.g., the disaccharides trehalose and sucrose. Preferably, the protective sugars are present at both the inside and outside surfaces of the liposome membranes. Freezing of the liposome preparation prior to dehydration is optional. Alternatively, the protective sugar can be omitted if: (1) the liposomes are of the type which have multiple lipid layers; (2) the dehydration is done without prior freezing; and (3) the dehydration is performed to an end point which results in sufficient water being left in the preparation (e.g., at least 12 moles water/mole lipid) so that the integrity of a substantial portion of the multiple lipid layers is retained upon rehydration.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: November 17, 1998
    Assignee: The Lipsome Company, Inc.
    Inventors: Andrew S. Janoff, Pieter R. Cullis, Marcel B. Bally, Michael W. Fountain, Richard S. Ginsberg, Michael J. Hope, Thomas D. Madden, Hugh P. Schieren, Regina L. Jablonski
  • Patent number: 5578320
    Abstract: Dehydrated liposomes are prepared by drying liposome preparations under reduced pressure in the presence of one or more protective sugars, e.g., the disaccharides trehalose and sucrose. Preferably, the protective sugars are present at both the inside and outside surfaces of the liposome membranes. Freezing of the liposome preparation prior to dehydration is optional. Alternatively, the protective sugar can be omitted if: (1) the liposomes are of the type which have multiple lipid layers; (2) the dehydration is done without prior freezing; and (3) the dehydration is performed to an end point which results in sufficient water being left in the preparation (e.g., at least 12 moles water/mole lipid) so that the integrity of a substantial portion of the multiple lipid layers is retained upon rehydration.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: November 26, 1996
    Assignee: The Liposome Company, Inc.
    Inventors: Andrew S. Janoff, Pieter R. Cullis, Marcel B. Bally, Michael W. Fountain, Richard S. Ginsberg, Michael J. Hope, Thomas D. Madden, Hugh P. Schieren, Regina L. Jablonski
  • Patent number: 5366958
    Abstract: This invention encompasses new and substantially improved methods and compositions for delivery of therapeutic agents to specifically chosen body sites. Conjugation of fibronectin to bioactive agents or to lipids or to liposomes which entrap the bioactive agents permits immobilization of the bioactive agent when administered at collagen-, heparin-, hyaluronic acid-, fibrin/fibrinogen-, or ganglioside-rich sites. Covalent conjugation is achieved by two methods: (1) the enzymatically catalyzed cross-linkage of fibronectin to an amine containing compound, and (2) by a modified NHS method which permits formation of peptide bonds between fibronectin and lipid compounds.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: November 22, 1994
    Assignee: The Liposome Company, Inc.
    Inventors: Alan L. Weiner, Robert P. Lenk, Sharon S. Carpenter-Green, Michael W. Fountain
  • Patent number: 5269979
    Abstract: A method for forming vehicles for encapsulating passenger molecules which have been named solvent dilution microcarriers (SDMCs), and the products of this process, are disclosed which allows for immediate or delayed formation of the encapsulating vehicles following creation of a shelf-stable formed solution by dissolution of amphipathic bilayer-forming materials, appropriate solvent, and the passenger molecule, addition of aqueous solution, and further addition of solvent. The SDMCs are organized from the formed solution by dilution into an aqueous system, aerosolization, or rehydration in situ.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: December 14, 1993
    Assignee: Fountain Pharmaceuticals, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 5169637
    Abstract: A new and substantially improved type of lipid vesicle, called stable plurilamellar vesicles (SPLVs), are described, as well as the process for making the same and X-ray diffraction methods for identifying the same. SPLVs are characterized by lipid bilayers enclosing aqueous compartments containing one or more entrapped solutes, the concentration of such solutes in each aqueous compartment being substantially equal to the emunization of solutes used to prepare the SPLVs. The bilayers of SPLVs are substantially non-compressed. SPLVs are stable during storage and can be used in vivo for the sustained release of compounds and in the treatment of disease.
    Type: Grant
    Filed: April 2, 1991
    Date of Patent: December 8, 1992
    Assignee: The Liposome Company, Inc.
    Inventors: Robert P. Lenk, Michael W. Fountain, Andrew S. Janoff, Mircea C. Popescu, Steven J. Weiss, Richard S. Ginsberg, Marc J. Ostro, Sol M. Gruner
  • Patent number: 5133965
    Abstract: A method for forming vehicles for encapsulating passenger molecules which have been named solvent dilution microcarriers (SDMCs), and the products of this process, are disclosed which allows for immediate or delayed formation of the encapsulating vehicles following creation of a shelf-stable formed solution by dissolution of amphipathic bilayer-forming materials, appropriate solvent, and the passenger molecule, addition of aqueous solution, and further addition of solvent. The SDMCs are organized from the formed solution by dilution into an aqueous system, aerosolization, or rehydration in situ. A dressing material is formed by adsorbing said shelf-stable formed solution onto said material.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: July 28, 1992
    Assignee: Fountain Pharmaceuticals, Inc.
    Inventor: Michael W. Fountain
  • Patent number: 5059591
    Abstract: Preparations of drugs in admixture with certain ligands are described which, when administered to animals or humans, are less toxic than conventional drug preparations. Although the toxicity of the drug-ligand preparations described is greatly reduced, the drug retains pharmacological activity.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: October 22, 1991
    Assignee: The Liposome Company, Inc.
    Inventors: Andrew S. Janoff, Mircea C. Popescu, Carl R. Alving, Michael W. Fountain, Robert P. Lenk, Marc J. Ostro, Paul A. Tremblay, Alan L. Weiner
  • Patent number: 5030453
    Abstract: A new and substantially improved type of lipid vesicle, called stable plurilamellar vesicles (SPLVs), are described, as well as the process for making the same and X-ray diffraction methods for identifying the same. SPLVs are characterized by lipid bilayers enclosing aqueous compartments containing one or more entrapped solutes, the concentration of such solutes in each aqueous compartment being substantially equal to the concentration of solutes used to prepare the SPLVs. The bilayers of SPLVs are substantially non-compressed. SPLVs are stable during storage and can be used in vivo for the sustained release of compounds and in the treatment of disease.
    Type: Grant
    Filed: October 12, 1984
    Date of Patent: July 9, 1991
    Assignee: The Liposome Company, Inc.
    Inventors: Robert P. Lenk, Michael W. Fountain, Andrew S. Janoff, Mircea C. Popescu, Steven J. Weiss, Richard S. Ginsberg, Marc J. Ostro, Sol M. Gruner
  • Patent number: 5000958
    Abstract: The invention encompasses mixtures of antimicrobial agents coencapsulated in liposomes which when administered in vivo exert an enhanced therapeutic effect. The therapeutic effectiveness of the coencapsulated antimocrobial agents is greater than that of the same combination administered either in solution or as a mixture of liposome populations each containing one of the antimicrobial agents.
    Type: Grant
    Filed: July 26, 1984
    Date of Patent: March 19, 1991
    Assignee: The Liposome Company, Inc.
    Inventors: Michael W. Fountain, Steven J. Weiss, Robert P. Lenk, Mircea C. Popescu, Richard S. Ginsberg
  • Patent number: 4897384
    Abstract: Preparations of drugs in admixture with certain ligands are described which, when administered to animals or humans, are less toxic than conventional drug preparations. Although the toxicity of the drug-ligand preparations described is greatly reduced, the drug retains pharmacological activity.
    Type: Grant
    Filed: March 24, 1986
    Date of Patent: January 30, 1990
    Assignee: The Liposome Company, Inc.
    Inventors: Andrew S. Janoff, Carl R. Alving, Michael W. Fountain, Robert P. Lenk, Marc J. Ostro, Mircea C. Popescu, Paul A. Tremblay, Alan L. Weiner