Patents by Inventor Michael W. Konevecki

Michael W. Konevecki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8913417
    Abstract: A memory cell is provided that includes a steering element, a reversible resistance-switching element coupled to the steering element and a silicide-forming metal layer disposed between the steering element and the reversible resistance-switching element. The reversible resistance-switching element includes tantalum, and is formed using a selective deposition process. Numerous other aspects are provided.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 16, 2014
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Patent number: 8759176
    Abstract: Methods in accordance with the invention involve patterning and etching very small dimension pillars, such as in formation of a memory array in accordance with the invention. When dimensions of pillars become very small, the photoresist pillars used to pattern them may not have sufficient mechanical strength to survive the photoresist exposure and development process. Using methods according to the present invention, these photoresist pillars are printed and developed larger than their intended final dimension, such that they have increased mechanical strength, then are shrunk to the desired dimension during a preliminary etch performed before the etch of underlying material begins.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 24, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 8722518
    Abstract: A method is provided for forming a monolithic three dimensional memory array. The method includes forming a first memory level above a substrate, and monolithically forming a second memory level above the first memory level. The first memory level is formed by forming first substantially parallel conductors extending in a first direction, forming first pillars above the first conductors, each first pillar including a first conductive layer or layerstack above a vertically oriented diode, the first pillars formed in a single photolithography step, depositing a first dielectric layer above the first pillars, etching first trenches in the first dielectric layer, the first trenches extending in a second direction. After etching, a lowest point in the trenches is above a lowest point of the first conductive layer or layerstack, and the first conductive layer or layerstack does not include a resistivity-switching metal oxide or nitride. Numerous other aspects are provided.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: May 13, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Steven J. Radigan, Usha Raghuram, Samuel V. Dunton, Michael W. Konevecki
  • Publication number: 20130244395
    Abstract: A method is provided for forming a monolithic three dimensional memory array. The method includes forming a first memory level above a substrate, and monolithically forming a second memory level above the first memory level. The first memory level is formed by forming first substantially parallel conductors extending in a first direction, forming first pillars above the first conductors, each first pillar including a first conductive layer or layerstack above a vertically oriented diode, the first pillars formed in a single photolithography step, depositing a first dielectric layer above the first pillars, etching first trenches in the first dielectric layer, the first trenches extending in a second direction. After etching, a lowest point in the trenches is above a lowest point of the first conductive layer or layerstack, and the first conductive layer or layerstack does not include a resistivity-switching metal oxide or nitride. Numerous other aspects are provided.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: SanDisk 3D LLC
    Inventors: Steven J. Radigan, Usha Raghuram, Samuel V. Dunton, Michael W. Konevecki
  • Publication number: 20120286233
    Abstract: A memory cell is provided that includes a steering element, a reversible resistance-switching element coupled to the steering element and a silicide-forming metal layer disposed between the steering element and the reversible resistance-switching element. The reversible resistance-switching element includes tantalum, and is formed using a selective deposition process. Numerous other aspects are provided.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Patent number: 8298931
    Abstract: A method for fabricating a 3-D monolithic memory device in which a via and trench are etched using an amorphous carbon hard mask. The via extends in multiple levels of the device as a multi-level vertical interconnect. The trench extends laterally, such as to provide a word line or bit line for memory cells, or to provide other routing paths. A dual damascene process can be used in which the via is formed first and the trench is formed second, or the trench is formed first and the via is formed second. The technique is particularly suitable for deep via applications, such as for via depths of greater than 1 ?m. A dielectric antireflective coating, optionally with a bottom antireflective coating, can be used to etch an amorphous carbon layer to provide the amorphous carbon hard mask.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 30, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 8233308
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a diode above the first conductor; (3) forming a reversible resistance-switching element above the first conductor using a selective deposition process; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 31, 2012
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Patent number: 7994068
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 9, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Patent number: 7955515
    Abstract: A method of plasma etching transition metal oxide thin films using carbon monoxide as the primary source gas. This permits carbonyl chemistries to be used at ambient temperature, without heating.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: June 7, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 7915164
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Patent number: 7915163
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Publication number: 20110021019
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Patent number: 7846785
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a diode above the first conductor; (3) forming a reversible resistance-switching element above the first conductor using a selective deposition process; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 7, 2010
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Publication number: 20100243602
    Abstract: A photolithographic method uses different exposure patterns. In one aspect, a photo-sensitive layer on a substrate is subject to a first exposure using optics having a first exposure pattern, such as an x-dipole pattern, followed by exposure using optics having a second exposure pattern, such as a y-dipole pattern, via the same mask, and with the photo-sensitive layer fixed relative to the mask. A 2-D post pattern with a pitch of approximately 70-150 nm may be formed in a layer beneath the photo-sensitive layer using 157-193 nm UV light, and hyper-numerical aperture optics, in one approach. In another aspect, hard baking is performed after both of the first and second exposures to erase a memory effect of photoresist after the first exposure. In another aspect, etching of a hard mask beneath the photo-sensitive layer is performed after both of the first and second exposures.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 30, 2010
    Inventors: Yung-Tin Chen, Steven J. Radigan, Paul Poon, Michael W. Konevecki
  • Patent number: 7794921
    Abstract: A photolithographic method uses different exposure patterns. In one aspect, a photo-sensitive layer on a substrate is subject to a first exposure using optics having a first exposure pattern, such as an x-dipole pattern, followed by exposure using optics having a second exposure pattern, such as a y-dipole pattern, via the same mask, and with the photo-sensitive layer fixed relative to the mask. A 2-D post pattern with a pitch of approximately 70-150 nm may be formed in a layer beneath the photo-sensitive layer using 157-193 nm UV light, and hyper-numerical aperture optics, in one approach. In another aspect, hard baking is performed after both of the first and second exposures to erase a memory effect of photoresist after the first exposure. In another aspect, etching of a hard mask beneath the photo-sensitive layer is performed after both of the first and second exposures.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: September 14, 2010
    Assignee: Sandisk Corporation
    Inventors: Yung-Tin Chen, Steven J. Radigan, Paul Poon, Michael W. Konevecki
  • Publication number: 20100184259
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Patent number: 7718546
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: May 18, 2010
    Assignee: Sandisk 3D LLC
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Publication number: 20090273022
    Abstract: A monolithic three dimensional memory array is formed by a method that includes forming a first memory level above a substrate by i) forming a plurality of first substantially parallel conductors extending in a first direction, ii) forming first pillars above the first conductors, each first pillar comprising a first conductive layer or layerstack above a vertically oriented diode, the first pillars formed in a single photolithography step, iii) depositing a first dielectric layer above the first pillars, and iv) etching a plurality of substantially parallel first trenches in the first dielectric layer, the first trenches extending in a second direction, wherein, after the etching step, the lowest point in the trenches is above the lowest point of the first conductive layer or layerstack, wherein the first conductive layer or layerstack does not comprise a resistivity-switching metal oxide or nitride. The method also includes monolithically forming a second memory level above the first memory level.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: SanDisk 3D LLC
    Inventors: Steven J. Radigan, Usha Raghuram, Samuel V. Dunton, Michael W. Konevecki
  • Publication number: 20090258462
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 15, 2009
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Publication number: 20090224244
    Abstract: Methods in accordance with the invention involve patterning and etching very small dimension pillars, such as in formation of a memory array in accordance with the invention. When dimensions of pillars become very small, the photoresist pillars used to pattern them may not have sufficient mechanical strength to survive the photoresist exposure and development process. Using methods according to the present invention, these photoresist pillars are printed and developed larger than their intended final dimension, such that they have increased mechanical strength, then are shrunk to the desired dimension during a preliminary etch performed before the etch of underlying material begins.
    Type: Application
    Filed: April 10, 2009
    Publication date: September 10, 2009
    Applicant: SANDISK 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki