Patents by Inventor Michael W. Marsh

Michael W. Marsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10408096
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 10, 2019
    Assignee: BorgWarner Inc.
    Inventors: Christopher J. Pluta, Michael W. Marsh
  • Publication number: 20180320564
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Application
    Filed: November 6, 2017
    Publication date: November 8, 2018
    Inventors: Christopher J. PLUTA, Michael W. MARSH
  • Patent number: 9810109
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 7, 2017
    Assignee: BorgWarner Inc.
    Inventors: Christopher J. Pluta, Michael W. Marsh
  • Publication number: 20170254235
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Application
    Filed: September 10, 2015
    Publication date: September 7, 2017
    Applicant: BorgWarner Inc.
    Inventors: Christopher J. PLUTA, Michael W. MARSH
  • Patent number: 9284861
    Abstract: A variable cam timing phaser (10) includes a fluid transfer assembly with at least one of a fluid transfer sleeve (72) having a plurality of pressurized fluid passages (74a, 74b, 74c, 74d), and a fluid transfer plate (60) having a plurality of pressurized fluid passages (62a, 62b, 62c, 62d). Each passage (74a, 74b, 74c, 74d) extends in fluid communication with a corresponding circumferentially spaced annular groove segment portion (74f, 74g, 74h, 74i) for selective communication with first and second vane-type hydraulic couplings (40, 50) depending on an angular orientation of the fluid transfer sleeve (72) during rotation. Each passage (62a, 62b, 62c, 62d) extending from a corresponding centrally located port (64a, 64b, 64c, 64d) in fluid communication with a radially extending passage portion (66a, 66b, 66c, 66d) and with an arcuately extending passage portion (68a, 68b, 68c, 68d).
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: March 15, 2016
    Assignee: BorgWarner, Inc.
    Inventors: Mark Wigsten, Michael W Marsh
  • Patent number: 9175611
    Abstract: A flexible coupling linkage (14) anchors a housing (16) that at least partially encloses a rotor (18) of an actuator (22) against rotation, while allowing free movement of the housing (16) in two other planes relative to the rotor (18) to match an angular rotational plane orientation of the rotor (18) to prevent binding between the housing (16) and the rotor (18) due to misalignment. The flexible coupling linkage (14) can be selected from a group of pivot joints (24a, 24b) including at least one of a pivot pin joint (30, 34), a ball-and-socket joint (32), and any combination thereof.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: November 3, 2015
    Assignee: BorgWarner, Inc.
    Inventors: Christopher J. Pluta, Mark M. Wigsten, Michael W. Marsh
  • Patent number: 9080474
    Abstract: A variable cam timing phaser for an internal combustion engine having a concentric camshaft can include a stator (14) having an axis of rotation. An outer rotor (20) can rotate independently relative to the axis of rotation of the stator (14). A combination of an outer vane (22) and cavity (20a) can be associated with the outer rotor (20) to define first and second outer variable volume working chambers (20b, 20c). A radially inner located rotor (30) can rotate relative to the axis of rotation and independently of both the stator (14) and the outer rotor (20). A combination of an inner vane (32) and a cavity (30a) can be associated with the inner rotor (20) to define first and second inner variable volume working chambers (30b, 30c). When the first and second, outer and inner chambers (20b, 30b, 20c, 30c) selectively communicate with a source of pressurized fluid, phase orientation of the outer and inner rotors (20, 30) with respect to one another and with respect to the stator (14) is facilitated.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 14, 2015
    Assignee: BorgWarner, Inc.
    Inventors: Mark Wigsten, Michael W. Marsh
  • Publication number: 20140202408
    Abstract: A flexible coupling linkage (14) anchors a housing (16) that at least partially encloses a rotor (18) of an actuator (22) against rotation, while allowing free movement of the housing (16) in two other planes relative to the rotor (18) to match an angular rotational plane orientation of the rotor (18) to prevent binding between the housing (16) and the rotor (18) due to misalignment. The flexible coupling linkage (14) can be selected from a group of pivot joints (24a, 24b) including at least one of a pivot pin joint (30, 34), a ball-and-socket joint (32), and any combination thereof.
    Type: Application
    Filed: August 23, 2012
    Publication date: July 24, 2014
    Applicant: BORGWARNER INC.
    Inventors: Christopher J. Pluta, Mark M. Wigsten, Michael W. Marsh
  • Publication number: 20140190435
    Abstract: A variable cam timing phaser (10) includes a fluid transfer assembly with at least one of a fluid transfer sleeve (72) having a plurality of pressurized fluid passages (74a, 74b, 74c, 74d), and a fluid transfer plate (60) having a plurality of pressurized fluid passages (62a, 62b, 62c, 62d). Each passage (74a, 74b, 74c, 74d) extends in fluid communication with a corresponding circumferentially spaced annular groove segment portion (74f, 74g, 74h, 74i) for selective communication with first and second vane type hydraulic couplings (40, 50) depending on an angular orientation of the fluid transfer sleeve (72) during rotation. Each passage (62a, 62b, 62c, 62d) extending from a corresponding centrally located port (64a, 64b, 64c, 64d) in fluid communication with a radially extending passage portion (66a, 66b, 66c, 66d) and with an arcuately extending passage portion (68a, 68b, 68c, 68d).
    Type: Application
    Filed: August 23, 2012
    Publication date: July 10, 2014
    Applicant: BORGWARNER INC.
    Inventors: Mark Wigsten, Michael W Marsh
  • Publication number: 20130306011
    Abstract: A variable cam timing phaser for an internal combustion engine having a concentric camshaft can include a stator (14) having an axis of rotation. An outer rotor (20) can rotate independently relative to the axis of rotation of the stator (14). A combination of an outer vane (22) and cavity (20a) can be associated with the outer rotor (20) to define first and second outer variable volume working chambers (20b, 20c). A radially inner located rotor (30) can rotate relative to the axis of rotation and independently of both the stator (14) and the outer rotor (20). A combination of an inner vane (32) and a cavity (30a) can be associated with the inner rotor (20) to define first and second inner variable volume working chambers (30b, 30c). When the first and second, outer and inner chambers (20b, 30b, 20c, 30c) selectively communicate with a source of pressurized fluid, phase orientation of the outer and inner rotors (20, 30) with respect to one another and with respect to the stator (14) is facilitated.
    Type: Application
    Filed: January 25, 2012
    Publication date: November 21, 2013
    Applicant: BORGWARNER INC.
    Inventors: Mark Wigsten, Michael W. Marsh