Patents by Inventor Michael W. Putty

Michael W. Putty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8695418
    Abstract: Fluidic systems and methods of determining properties of fluids flowing therein. The fluidic systems and methods make use of a micromachined device that determines at least one property of the fluid within the system. The micromachined device includes a base structure on a substrate and a tube structure extending from the base structure and spaced apart from a surface of the substrate. The tube structure has at least one pair of geometrically parallel tube portions substantially lying in a plane, and at least one continuous internal passage defined at least in part within the parallel tube portions. A drive element induces vibrational movement of the tube structure in the plane of the tube structure and induces resonant vibrational movements in the tube portions in the plane of the tube structure. A sensing element senses deflections of each tube portion in the plane of the tube structure.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 15, 2014
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Nader Najafi, Richard Thayre Smith
  • Patent number: 8272274
    Abstract: A microelectromechanical system (MEMS) device and a method for operating the device to determine at least one property of a fluid. The device includes a base on a substrate and a tube structure extending from the base and spaced apart from a surface of the substrate. The tube structure includes at least one tube portion and more preferably at least a pair of parallel tube portions substantially lying in a plane, at least one continuous internal passage defined at least in part within the parallel tube portions, and an inlet and outlet of the internal passage fluidically connected to the base. A drive element is operable to induce vibrational movement in the tube structure in a plane of the tube structure and induce resonant vibrational movements in the tube portions. A sensing element senses the deflections of the tube portions when the tube structure is vibrated with the drive element.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: September 25, 2012
    Assignee: Integrated Sensing Systems Inc.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Richard Thayre Smith, Nader Najafi
  • Publication number: 20110214512
    Abstract: Fluidic systems and methods of determining properties of fluids flowing therein. The fluidic systems and methods make use of a micromachined device that determines at least one property of the fluid within the system. The micromachined device includes a base structure on a substrate and a tube structure extending from the base structure and spaced apart from a surface of the substrate. The tube structure has at least one pair of geometrically parallel tube portions substantially lying in a plane, and at least one continuous internal passage defined at least in part within the parallel tube portions. A drive element induces vibrational movement of the tube structure in the plane of the tube structure and induces resonant vibrational movements in the tube portions in the plane of the tube structure. A sensing element senses deflections of each tube portion in the plane of the tube structure.
    Type: Application
    Filed: April 25, 2011
    Publication date: September 8, 2011
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Nader Najafi, Richard Thayre Smith
  • Publication number: 20100037706
    Abstract: A microelectromechanical system (MEMS) device and a method for operating the device to determine at least one property of a fluid. The device includes a base on a substrate and a tube structure extending from the base and spaced apart from a surface of the substrate. The tube structure includes at least one tube portion and more preferably at least a pair of parallel tube portions substantially lying in a plane, at least one continuous internal passage defined at least in part within the parallel tube portions, and an inlet and outlet of the internal passage fluidically connected to the base. A drive element is operable to induce vibrational movement in the tube structure in a plane of the tube structure and induce resonant vibrational movements in the tube portions. A sensing element senses the deflections of the tube portions when the tube structure is vibrated with the drive element.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 18, 2010
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Richard Thayre Smith, Nader Najafi
  • Patent number: 7553077
    Abstract: Systems and methods for determining a temperature of a ferroelectric sensor are provided. The ferroelectric sensor has operational characteristics defined by a polarization versus voltage hysteresis loop. In one exemplary embodiment, the method includes applying a symmetrical periodic voltage waveform to the ferroelectric sensor so as to induce the ferroelectric sensor to traverse the polarization versus voltage hysteresis loop. The method further includes monitoring voltages across the ferroelectric sensor and polarization states of the ferroelectric sensor over a first time interval to determine a first zero field polarization state and a first coercive field voltage. The method further includes determining a first temperature value indicative of the temperature of the ferroelectric sensor based on the first coercive field voltage.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: June 30, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Norman W. Schubring, Michael W. Putty, Joseph V. Mantese, Adolph L. Micheli
  • Publication number: 20080304545
    Abstract: Systems and methods for determining a temperature of a ferroelectric sensor are provided. The ferroelectric sensor has operational characteristics defined by a polarization versus voltage hysteresis loop. In one exemplary embodiment, the method includes applying a symmetrical periodic voltage waveform to the ferroelectric sensor so as to induce the ferroelectric sensor to traverse the polarization versus voltage hysteresis loop. The method further includes monitoring voltages across the ferroelectric sensor and polarization states of the ferroelectric sensor over a first time interval to determine a first zero field polarization state and a first coercive field voltage. The method further includes determining a first temperature value indicative of the temperature of the ferroelectric sensor based on the first coercive field voltage.
    Type: Application
    Filed: June 11, 2007
    Publication date: December 11, 2008
    Inventors: Norman W. Schubring, Michael W. Putty, Joseph V. Mantese, Adolph L. Micheli
  • Patent number: 6809436
    Abstract: An electromagnetic microactuator having a ferromagnetic substrate, preferably steel. A plurality of layers are deposited upon the substrate including an insulating layer, a seed layer and first and second photoresist layers. The first photoresist layer provides a coil well which defines the deposition location of a coil metal. The second photoresist layer provides central and peripheral core wells which define the deposition locations of a central core and a peripheral core, respectively. The second photoresist layer intersticially fills and protectively covers the coil.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: October 26, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Shih-Chia Chang, Marie I. Harrington, David Sturge Eddy, Michael W. Putty, Jeffrey M Kempisty
  • Publication number: 20040189106
    Abstract: An electromagnetic microactuator having a ferromagnetic substrate, preferably steel. A plurality of layers are deposited upon the substrate including an insulating layer, a seed layer and first and second photoresist layers. The first photoresist layer provides a coil well which defines the deposition location of a coil metal. The second photoresist layer provides central and peripheral core wells which define the deposition locations of a central core and a peripheral core, respectively. The second photoresist layer intersticially fills and protectively covers the coil.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 30, 2004
    Inventors: Shih-Chia Chang, Marie I. Harrington, David Sturge Eddy, Michael W. Putty, Jeffrey M. Kempisty
  • Patent number: 5450751
    Abstract: A microstructure for a vibratory gyroscope has a ring portion supported in such a fashion to allow substantially undamped, high-Q radial vibration. The ring portion is electrically conductive and comprises a charge plate for a plurality of radially disposed charge conductive sites around its perimeter for sensing radial displacements thereof. The ring, its support and charge conductive sites are formed within sacrificial molds on one surface of a conventional silicon substrate which may comprise a monolithic integrated circuit.
    Type: Grant
    Filed: May 4, 1993
    Date of Patent: September 19, 1995
    Assignee: General Motors Corporation
    Inventors: Michael W. Putty, David S. Eddy
  • Patent number: 5383362
    Abstract: A control circuit for a resonating rotation sensor has a pair of closed loop controls for independently controlling component traveling waves of a resonant pattern in a ring shaped resonant member. Frequency and phase quantities of the independent traveling waves as well as time dependant quantities thereof indicate total rotation angle, rotation raze and rotation direction.
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: January 24, 1995
    Assignee: General Motors Corporation
    Inventors: Michael W. Putty, David S. Eddy
  • Patent number: 5233874
    Abstract: A microaccelerometer is provided for use in on-board automotive safety control and navigational systems. The microaccelerometer includes a central support body which is supported upon a backing chip, a peripheral proof mass which circumscribes the central support body, and at least one pair of microbridges, each of which are attached to both the central support body and the peripheral proof mass. The pair of microbridges extend outwardly in opposite directions from the central support body such that a longitudinal axis through each of the microbridges forms a common axis through the central support body. The microbridges are attached to the peripheral proof mass at the end opposite the central support body so as to suspend the peripheral proof mass circumferentially about the central support body and above the backing chip.
    Type: Grant
    Filed: August 19, 1991
    Date of Patent: August 10, 1993
    Assignee: General Motors Corporation
    Inventors: Michael W. Putty, David B. Hicks, Shih-Chia Chang, David S. Eddy
  • Patent number: 4901570
    Abstract: A resonant bridge two-axis microaccelerometer is disclosed comprising polysilicon resonant bridges orthogonally attached to a silicon proof mass, such that the silicon proof mass is suspended by the resonant bridges. Acceleration in the plane of the substrate causes differential axial loads on the opposing microbridges in each pair, thereby shifting their resonant frequencies. The acceleration component aligned with a pair is measured by the difference in resonant frequencies.
    Type: Grant
    Filed: January 30, 1989
    Date of Patent: February 20, 1990
    Assignee: General Motors Corporation
    Inventors: Shih-Chia Chang, David B. Hicks, Michael W. Putty
  • Patent number: 4588520
    Abstract: New and improved compacted or powder pressed materials for thermoelectric applications include a body formed from compacted powder material including at least bismuth and tellurium and at least one highly electrically conductive phase. The materials are made in accordance with the general method of the present invention by forming a particulate mixture containing the constituent elements of a first compound including at least bismuth and tellurium and the constituent elements of a second compound capable of forming at least one highly electrically conductive phase, and thereafter, compressing at least a portion of said particulate mixture to form a compacted body of the material. In accordance with a first preferred embodiment, the first and second compounds are first separately prepared from their respective constituent elements. The first and second compounds are then combined and heated to form a melt. Thereafter, the melt is cooled to solid material form and then crushed to form the particulate mixture.
    Type: Grant
    Filed: September 3, 1982
    Date of Patent: May 13, 1986
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Tumkur S. Jayadev, On Van Nguyen, Jaime M. Reyes, Helen Davis, Michael W. Putty