Patents by Inventor Michael W. Wiltberger

Michael W. Wiltberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170326003
    Abstract: A laser eye surgery system used to treat vitreous bodies includes a laser source, a ranging subsystem, an integrated optical subsystem, and a patient interface assembly. The laser source produces a treatment beam that includes a plurality of laser pulses. The ranging subsystem produces a source beam used to locate one or more structures of an eye. In some embodiments, the ranging subsystem includes an optical coherence tomography (OCT) pickoff assembly that includes a first optical wedge and a second optical wedge separated from the first optical wedge. The OCT pickoff assembly is configured to divide an OCT source beam into a sample beam and a reference beam. The integrated optical subsystem is used to scan the treatment beam and the sample beam. In other embodiments, Purkinje imaging, Scheimpflug imaging, confocal or nonlinear optical microscopy, ultrasound, stereo imaging, fluorescence imaging, or other medical imaging technique may be used.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 16, 2017
    Inventors: Georg SCHUELE, Phillip H. GOODING, Alexander VANKOV, Michael W. WILTBERGER
  • Publication number: 20170258579
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: William Culbertson, Mark S. Blumenkranz, David Angeley, George R. Marcellino, Michael W. Wiltberger, Dan Anderson
  • Publication number: 20170239088
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: May 5, 2017
    Publication date: August 24, 2017
    Inventors: Phillip Gooding, Michael W. Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Patent number: 9662198
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: May 30, 2017
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark S. Blumenkranz, David Angeley, George R. Marcellino, Michael W. Wiltberger, Dan Anderson
  • Patent number: 9642748
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: May 9, 2017
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Michael W. Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Publication number: 20160256261
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventors: William Culbertson, Mark S. Blumenkranz, David Angeley, George R. Marcellino, Michael W. Wiltberger, Dan Anderson
  • Publication number: 20160095517
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: Phillip Gooding, Michael W. Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Publication number: 20150100049
    Abstract: System and method for generating patterns P of aiming and treatment light on target eye tissue (e.g. the retina) of a patient's eye. The system includes light sources for treatment and aiming light, a scanner for generating patterns of spots of the generated light, a controller, and a graphic user interface that allows the user to select one of several possible spot patterns, adjust the spot density and/or spot size, and apply patterns with fixed or varied density. The patterns can be formed of interlaced sub-patterns and/or scanned without adjacent spots being consecutively formed to reduce localized heating. Partially or fully enclosed exclusion zones within the patterns protect sensitive target tissue from exposure to the light.
    Type: Application
    Filed: May 22, 2014
    Publication date: April 9, 2015
    Applicant: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventors: David Haydn MORDAUNT, George MARCELLINO, Michael W. WILTBERGER, Justin HENDRICKSON, Katrina BELL, Dan E. ANDERSEN
  • Publication number: 20130345683
    Abstract: A method of treating target tissue of an embodiment comprises: selecting a treatment pattern of spots; generating an aiming beam of aiming light; translating the aiming beam to form an aiming pattern of the aiming light on the target tissue that indicates the extent of the treatment pattern; generating a treatment beam of treatment light; and translating the treatment beam to form the selected treatment pattern of spots of the treatment light on the target tissue.
    Type: Application
    Filed: July 23, 2013
    Publication date: December 26, 2013
    Applicant: Topcon Medical Laser Systems, Inc
    Inventors: David Haydn Mordaunt, George Marcellino, Michael W. Wiltberger, Justin Hendrickson, Katrina Bell, Dan E. Anderson
  • Patent number: 7599591
    Abstract: An optical device and method for varying an optical characteristic of an optical beam can include a plurality of optical fibers each having an input end, an output end, and a core, wherein each of the optical fibers has an effective area and a numerical aperture, and a beam-deviating component for moving at least one of the optical fiber input ends and the optical beam relative to each other such that the optical beam selectively enters the input ends one at a time and is transmitted out the output ends one at a time, wherein at least one of the effective areas and the numerical apertures varies among the plurality of optical fibers such that the optical beam transmitted out of the output ends has a varying optical characteristic.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 6, 2009
    Assignee: Optimedica Corporation
    Inventors: Dan E. Andersen, David G. Angeley, Philip Gooding, Michael W. Wiltberger, David H. Mordaunt
  • Patent number: 7452080
    Abstract: An apparatus and method for treating and/or diagnosing a patient's eye. A light source produces fixation light and procedure (treatment and/or diagnosis) light. A scanning device deflects the fixation light to produce a fixation pattern of the fixation light on the eye, and deflects the procedure light to produce a procedure pattern of the procedure light on the eye. A controller controls the scanning device such that the fixation and procedure patterns move relative to each other, and/or the fixation pattern dynamically changes.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: November 18, 2008
    Assignee: Optimedica Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen
  • Patent number: 7452081
    Abstract: An apparatus and method for treating and/or diagnosing a patient's eye. A light source produces fixation light and procedure light. A scanning device deflects the fixation light to produce a fixation pattern of the fixation light on the eye, and deflects the procedure light to produce a procedure pattern of the procedure light on the eye. A controller controls the scanning device such that the fixation and procedure patterns move relative to each other, and/or the fixation pattern dynamically changes.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 18, 2008
    Assignee: Optimedica Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen
  • Patent number: 7263255
    Abstract: An apparatus and method may provide uniform illumination on the retina using scanned continuous wave laser sources by making use of waveguides with regular shaped cross sections. Some embodiments of the present invention may provide illumination uniformity for selected spots and/or whole target scans, and may provide for constant dwell times every point of the scanned beam. Furthermore, the non-uniformities caused by starting and stopping scans may be eliminated by, for example, clipping-off both the beginning and end of the scan with a hard aperture. A modulator may be provided, enabling uniform irradiation of selected target areas.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: August 28, 2007
    Assignee: Lumenis Inc.
    Inventors: Dan E. Andersen, David G. Angeley, Michael W. Wiltberger
  • Publication number: 20030231827
    Abstract: An apparatus and method may provide uniform illumination on the retina using scanned continuous wave laser sources by making use of waveguides with regular shaped cross sections. Some embodiments of the present invention may provide illumination uniformity for selected spots and/or whole target scans, and may provide for constant dwell times every point of the scanned beam. Furthermore, the non-uniformities caused by starting and stopping scans may be eliminated by, for example, clipping-off both the beginning and end of the scan with a hard aperture. A modulator may be provided, enabling uniform irradiation of selected target areas.
    Type: Application
    Filed: April 8, 2003
    Publication date: December 18, 2003
    Inventors: Dan E. Andersen, David G. Angeley, Michael W. Wiltberger