Patents by Inventor Michael Warnock

Michael Warnock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210339243
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Eli N. GLEZER, Bandele Jeffrey-Coker, Jeffery D. Debad, Sudeep M. Kumar, George B. Sigal, Bisbert Spieles, Michael Tsionsky, Michael Warnock
  • Patent number: 11065615
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 20, 2021
    Assignee: MESO SCALE TECHNOLOGIES, LLC
    Inventors: Eli N. Glezer, Bandele Jeffrey-Coker, Jeffery D. Debad, Sudeep M. Kumar, George B. Sigal, Gisbert Spieles, Michael Tsionsky, Michael Warnock
  • Publication number: 20200120014
    Abstract: Systems and techniques are provided for multi-hop path finding. Order data describing an order may be received. The order data may include a currency pair, a price level, and a volume. A one-hop path structure may be generated based on the order data describing the order. The one-hop path structure may include one-hop paths for the currency pair. The one-hop path structure may be written to a first ring buffer. The one-hop path structure may be read from the first ring buffer. Two-hop path structures may be generated by joining the one-hop path structure with other one-hop path structures. A value for the relative importance of the two-hop path structures may be determined to be greater than a threshold. Combined two-hop path structures may be written to a second ring buffer when the value for the relative importance of the two-hop path structures is greater than the threshold.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: Ripple Labs inc.
    Inventor: Michael Warnock
  • Patent number: 10511520
    Abstract: Systems and techniques are provided for multi-hop path finding. Order data describing an order may be received. The order data may include a currency pair, a price level, and a volume. A one-hop path structure may be generated based on the order data describing the order. The one-hop path structure may include one-hop paths for the currency pair. The one-hop path structure may be written to a first ring buffer. The one-hop path structure may be read from the first ring buffer. Two-hop path structures may be generated by joining the one-hop path structure with other one-hop path structures. A value for the relative importance of the two-hop path structures may be determined to be greater than a threshold. Combined two-hop path structures may be written to a second ring buffer when the value for the relative importance of the two-hop path structures is greater than the threshold.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: December 17, 2019
    Assignee: Ripple Labs Inc.
    Inventor: Michael Warnock
  • Publication number: 20190372885
    Abstract: Systems and techniques are provided for multi-hop path finding. Order data describing an order may be received. The order data may include a currency pair, a price level, and a volume. A one-hop path structure may be generated based on the order data describing the order. The one-hop path structure may include one-hop paths for the currency pair. The one-hop path structure may be written to a first ring buffer. The one-hop path structure may be read from the first ring buffer. Two-hop path structures may be generated by joining the one-hop path structure with other one-hop path structures. A value for the relative importance of the two-hop path structures may be determined to be greater than a threshold. Combined two-hop path structures may be written to a second ring buffer when the value for the relative importance of the two-hop path structures is greater than the threshold.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 5, 2019
    Inventor: Michael Warnock
  • Publication number: 20180154353
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 7, 2018
    Inventors: Eli N. GLEZER, Bandele JEFFREY-COKER, Jeffery D. DEBAD, Sudeep M. KUMAR, George B. SIGAL, Gisbert SPIELES, Michael TSIONSKY, Michael WARNOCK
  • Patent number: 9878323
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: January 30, 2018
    Assignee: MESO SCALE TECHNOLOGIES, LLC
    Inventors: Eli N. Glezer, Bandele Jeffrey-Coker, Jeffery D. Debad, Sudeep M. Kumar, George B. Sigal, Gisbert Spieles, Michael Tsionsky, Michael Warnock
  • Patent number: 8298834
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 30, 2012
    Assignee: Meso Scale Technologies, L.L.C.
    Inventors: Eli N. Glezer, Bandele Jeffrey-Coker, Jeff D. Debad, Sudeep M. Kumar, George Sigal, Gisbert Spieles, Michael Tsionsky, Michael Warnock
  • Publication number: 20110015091
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Application
    Filed: August 31, 2010
    Publication date: January 20, 2011
    Applicant: Meso Scale Technologies, L.L.C.
    Inventors: Eli N. GLEZER, Bandele JEFFREY-COKER, Jeff D. DEBAD, Sudeep M. KUMAR, George SIGAL, Gisbert SPIELES, Michael TSIONSKY, Michael WARNOCK
  • Patent number: 7807448
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 5, 2010
    Inventors: Eli N. Glezer, Bandele Jeffrey-Coker, Jeff D. Debad, Sudeep M. Kumar, George Sigal, Gisbert Spieles, Michael Tsionsky, Michael Warnock
  • Publication number: 20070202538
    Abstract: We describe assay modules (e.g., assay plates, cartridges, multi-well assay plates, reaction vessels, etc.), processes for their preparation, and method of their use for conducting assays. Reagents may be present in free form or supported on solid phases including the surfaces of compartments (e.g., chambers, channels, flow cells, wells, etc.) in the assay modules or the surface of colloids, beads, or other particulate supports. In particular, dry reagents can be incorporated into the compartments of these assay modules and reconstituted prior to their use in accordance with the assay methods. A desiccant material may be used to maintain and stabilize these reagents in a dry state.
    Type: Application
    Filed: December 21, 2006
    Publication date: August 30, 2007
    Inventors: Eli Glezer, Bandele Jeffrey-Coker, Jeff Debad, Sudeep Kumar, George Sigal, Gisbert Spieles, Michael Tsionsky, Michael Warnock