Patents by Inventor Michael Wenyoung Tsiang

Michael Wenyoung Tsiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898249
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward W. Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20230352349
    Abstract: Embodiments of the present technology may include semiconductor processing methods that include depositing a film of semiconductor material on a substrate in a substrate processing chamber. The deposited film may be sampled for defects at greater than or about two non-contiguous regions of the substrate with scanning electron microscopy. The defects that are detected and characterized may include those of a size less than or about 10 nm. The methods may further include calculating a total number of defects in the deposited film based on the sampling for defects in the greater than or about two non-contiguous regions of the substrate. At least one deposition parameter may be adjusted as a result of the calculation. The adjustment to the at least one deposition parameter may reduce the total number of defects in a deposition of the film of semiconductor material.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Mandar B. Pandit, Man-Ping Cai, Wenhui Li, Michael Wenyoung Tsiang, Praket Prakash Jha, Jingmin Leng
  • Patent number: 11710631
    Abstract: Exemplary semiconductor processing methods may include flowing deposition gases that may include a nitrogen-containing precursor, a silicon-containing precursor, and a carrier gas, into a substrate processing region of a substrate processing chamber. The flow rate ratio of the nitrogen-containing precursor to the silicon-containing precursor may be greater than or about 1:1. The methods may further include generating a deposition plasma from the deposition gases to form a silicon-and-nitrogen containing layer on a substrate in the substrate processing chamber. The silicon-and-nitrogen-containing layer may be treated with a treatment plasma, where the treatment plasma is formed from the carrier gas without the silicon-containing precursor. The flow rate of the carrier gas in the treatment plasma may be greater than a flow rate of the carrier gas in the deposition plasma.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 25, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Yichuen Lin, Kevin Hsiao, Hang Yu, Deenesh Padhi, Yijun Liu, Li-Qun Xia
  • Patent number: 11699623
    Abstract: Embodiments of the present technology may include semiconductor processing methods that include depositing a film of semiconductor material on a substrate in a substrate processing chamber. The deposited film may be sampled for defects at greater than or about two non-contiguous regions of the substrate with scanning electron microscopy. The defects that are detected and characterized may include those of a size less than or about 10 nm. The methods may further include calculating a total number of defects in the deposited film based on the sampling for defects in the greater than or about two non-contiguous regions of the substrate. At least one deposition parameter may be adjusted as a result of the calculation. The adjustment to the at least one deposition parameter may reduce the total number of defects in a deposition of the film of semiconductor material.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mandar B. Pandit, Man-Ping Cai, Wenhui Li, Michael Wenyoung Tsiang, Praket Prakash Jha, Jingmin Leng
  • Publication number: 20230193466
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward W. BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 11613812
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 11515150
    Abstract: Exemplary processing methods may include forming a plasma of a deposition precursor in a processing region of a semiconductor processing chamber. The methods may include adjusting a variable capacitor within 20% of a resonance peak. The variable capacitor may be coupled with an electrode incorporated within a substrate support on which a substrate is seated. The methods may include depositing a material on the substrate.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Abdul Aziz Khaja, Li-Qun Xia, Kevin Hsiao, Liangfa Hu, Yayun Cheng
  • Publication number: 20220375747
    Abstract: Processing methods disclosed herein comprise forming a nucleation layer and a flowable chemical vapor deposition (FCVD) film on a substrate surface by exposing the substrate surface to a silicon-containing precursor and a reactant. By controlling at least one of a precursor/reactant pressure ratio, a precursor/reactant flow ratio and substrate temperature formation of miniature defects is minimized. Controlling at least one of the process parameters may reduce the number of miniature defects. The FCVD film can be cured by any suitable curing process to form a smooth FCVD film.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Wenhui Li, Praket P. Jha, Mandar B. Pandit, Man-Ping Cai, Jingmei Liang, Michael Wenyoung Tsiang
  • Publication number: 20220130665
    Abstract: Exemplary processing methods may include forming a plasma of a deposition precursor in a processing region of a semiconductor processing chamber. The methods may include adjusting a variable capacitor within 20% of a resonance peak. The variable capacitor may be coupled with an electrode incorporated within a substrate support on which a substrate is seated. The methods may include depositing a material on the substrate.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Abdul Aziz Khaja, Li-Qun Xia, Kevin Hsiao, Liangfa Hu, Yayun Cheng
  • Publication number: 20220130661
    Abstract: Exemplary semiconductor processing methods may include flowing deposition gases that may include a nitrogen-containing precursor, a silicon-containing precursor, and a carrier gas, into a substrate processing region of a substrate processing chamber. The flow rate ratio of the nitrogen-containing precursor to the silicon-containing precursor may be greater than or about 1:1. The methods may further include generating a deposition plasma from the deposition gases to form a silicon-and-nitrogen containing layer on a substrate in the substrate processing chamber. The silicon-and-nitrogen-containing layer may be treated with a treatment plasma, where the treatment plasma is formed from the carrier gas without the silicon-containing precursor. The flow rate of the carrier gas in the treatment plasma may be greater than a flow rate of the carrier gas in the deposition plasma.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Yichuen Lin, Kevin Hsiao, Hang Yu, Deenesh Padhi, Yijun Liu, Li-Qun Xia
  • Publication number: 20220115275
    Abstract: Embodiments of the present technology may include semiconductor processing methods that include depositing a film of semiconductor material on a substrate in a substrate processing chamber. The deposited film may be sampled for defects at greater than or about two non-contiguous regions of the substrate with scanning electron microscopy. The defects that are detected and characterized may include those of a size less than or about 10 nm. The methods may further include calculating a total number of defects in the deposited film based on the sampling for defects in the greater than or about two non-contiguous regions of the substrate. At least one deposition parameter may be adjusted as a result of the calculation. The adjustment to the at least one deposition parameter may reduce the total number of defects in a deposition of the film of semiconductor material.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Mandar B. Pandit, Man-Ping Cai, Wenhui Li, Michael Wenyoung Tsiang, Praket Prakash Jha, Jingmin Leng
  • Patent number: 11133177
    Abstract: Embodiments described herein generally related to methods for forming a flowable low-k dielectric layer over a trench formed on a surface of a patterned substrate. The methods include delivering a silicon and carbon containing precursor into a substrate processing region of a substrate processing chamber for a first period of time and a second period of time, flowing an oxygen-containing precursor into a remote plasma region of a plasma source while igniting a remote plasma to form a radical-oxygen precursor, flowing the radical-oxygen precursor into the substrate processing region at a second flow rate after the first period of time has elapsed and during the second period of time, and exposing the silicon and carbon containing dielectric precursor to electromagnetic radiation for a third period of time after the second period of time has elapsed.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: September 28, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Jay Seamons, Michael Wenyoung Tsiang, Jingmei Liang
  • Patent number: 11060189
    Abstract: Implementations of the present disclosure provide methods for processing substrates in a processing chamber. In one implementation, the method includes (a) depositing a dielectric layer on a first substrate at a first chamber pressure using a first high-frequency RF power, (b) depositing sequentially a dielectric layer on N substrates subsequent to the first substrate at a second chamber pressure, wherein N is an integral number of 5 to 10, and wherein depositing each substrate of N substrates comprises using a second high-frequency RF power that has a power density of about 0.21 W/cm2 to about 0.35 W/cm2 lower than that of the first high-frequency RF power, (c) performing a chamber cleaning process without the presence of a substrate, and (d) repeating (a) to (c).
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 13, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Praket P. Jha, Deenesh Padhi
  • Publication number: 20200399756
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 10793954
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20200203154
    Abstract: Embodiments described herein generally related to methods for forming a flowable low-k dielectric layer over a trench formed on a surface of a patterned substrate. The methods include delivering a silicon and carbon containing precursor into a substrate processing region of a substrate processing chamber for a first period of time and a second period of time, flowing an oxygen-containing precursor into a remote plasma region of a plasma source while igniting a remote plasma to form a radical-oxygen precursor, flowing the radical-oxygen precursor into the substrate processing region at a second flow rate after the first period of time has elapsed and during the second period of time, and exposing the silicon and carbon containing dielectric precursor to electromagnetic radiation for a third period of time after the second period of time has elapsed.
    Type: Application
    Filed: November 4, 2019
    Publication date: June 25, 2020
    Inventors: Martin Jay SEAMONS, Michael Wenyoung TSIANG, Jingmei LIANG
  • Publication number: 20200190664
    Abstract: Methods for depositing hardmask materials and films, and more specifically, for depositing phosphorus-doped, silicon nitride films are provided. A method of depositing a material on a substrate in a processing chamber includes exposing a substrate to a deposition gas in the presence of RF power to deposit a phosphorus-doped, silicon nitride film on the substrate during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The deposition gas contains one or more silicon precursors, one or more nitrogen precursors, one or more phosphorus precursors, and one or more carrier gases. The phosphorus-doped, silicon nitride film has a phosphorus concentration in a range from about 0.1 atomic percent (at %) to about 10 at %.
    Type: Application
    Filed: October 14, 2019
    Publication date: June 18, 2020
    Inventors: Kesong HU, Rana HOWLADER, Michael Wenyoung TSIANG, Xinhai HAN, Hang YU, Deenesh PADHI
  • Publication number: 20200095677
    Abstract: Implementations of the present disclosure provide methods for processing substrates in a processing chamber. In one implementation, the method includes (a) depositing a dielectric layer on a first substrate at a first chamber pressure using a first high-frequency RF power, (b) depositing sequentially a dielectric layer on N substrates subsequent to the first substrate at a second chamber pressure, wherein N is an integral number of 5 to 10, and wherein depositing each substrate of N substrates comprises using a second high-frequency RF power that has a power density of about 0.21 W/cm2 to about 0.35 W/cm2 lower than that of the first high-frequency RF power, (c) performing a chamber cleaning process without the presence of a substrate, and (d) repeating (a) to (c).
    Type: Application
    Filed: December 18, 2017
    Publication date: March 26, 2020
    Inventors: Michael Wenyoung TSIANG, Praket P. JHA, Deenesh PADHI
  • Patent number: 10515796
    Abstract: Embodiments described herein relate to methods of forming silicon nitride films. In one embodiment, a first process gas set including a silicon-containing gas and a first nitrogen-containing gas is flowed into the process chamber. An initiation layer is deposited by applying a first radio frequency power to the first process gas set at a first frequency and a first power level. The first flow of the first nitrogen-containing gas of the first process gas set is discontinued and a second process gas set including the silicon-containing gas, a second nitrogen-containing gas, and a hydrogen-containing gas is flowed into the process chamber. A bulk silicon nitride layer is deposited on the initiation layer by applying a second RF power to the second process gas set at a second frequency higher than the first frequency and a second power level higher than the first power level.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 24, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Wenyoung Tsiang, Hang Yu, Deenesh Padhi, Tza-Jing Gung
  • Patent number: 10483282
    Abstract: Embodiments of the present disclosure generally relate to an improved method for forming a dielectric film stack used for inter-level dielectric (ILD) layers in a 3D NAND structure. In one embodiment, the method comprises providing a substrate having a gate stack deposited thereon, forming on exposed surfaces of the gate stack a first oxide layer using a first RF power and a first process gas comprising a TEOS gas and a first oxygen-containing gas, and forming over the first oxide layer a second oxide layer using a second RF power and a second process gas comprising a silane gas and a second oxygen-containing gas.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Praket P. Jha, Xinhai Han, Bok Hoen Kim, Sang Hyuk Kim, Myung Hun Ju, Hyung Jin Park, Ryeun Kwan Kim, Jin Chul Son, Saiprasanna Gnanavelu, Mayur G. Kulkarni, Sanjeev Baluja, Majid K. Shahreza, Jason K. Foster