Patents by Inventor Michael Wilcox

Michael Wilcox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10397495
    Abstract: A mobile calibration room may be used for calibrating one or more sensors used on unmanned aerial vehicles (UAVs). A system can include folding or collapsible walls to enable the system to be moved between a stowed position and a deployed position. In the deployed position, the system can comprise a calibration room including one or more 2D or 3D targets used to calibrate one or more sensors (e.g., cameras) on a UAV. The system can include a turntable to rotate the UAV about a first axis during calibration. The system can also include a cradle to rotate the UAV around, or translate the UAV along, a second axis. The turntable can include a frame to rotate the UAV around a third axis during calibration. The mobile calibration room can be coupled to a vehicle to enable the mobile calibration room to be moved between locations.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: August 27, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Sarah Graber, Martin Koestinger, Barry James O'Brien, Gerald Schweighofer, Mario Sormann, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10388172
    Abstract: Techniques for providing an object awareness guidance to clear a landing space may be provided. For example, during delivery an unmanned aerial vehicle (UAV) may capture an image of a potential landing zone and identify one or more objects in the image that may impede or obstruct delivery of the item in the potential landing zone. The UAV may be configured to generate and provide instructions to a user device to move or remove the identified one or more objects from the potential landing zone thereby creating a safe and unobstructed landing zone to deliver the item.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 20, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10366506
    Abstract: Methods and systems described herein determine a location of a tracked object with respect to a coordinate system of a sensor array by using analog signals from sensors having overlapping nonlinear responses. Hyperacuity and real time tracking are achieved by either digital or analog processing of the sensor signals. Multiple sensor arrays can be configured in a plane, on a hemisphere or other complex surface to act as a single sensor or to provide a wide field of view and zooming capabilities of the sensor array. The processing methods can be used to adjust to contrast reversals between an image and the background.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 30, 2019
    Assignee: LAMINA SYSTEMS, INC.
    Inventors: Ricardo A. G. Unglaub, Michael Wilcox, Paul Swanson, Chris Odell
  • Patent number: 10366521
    Abstract: Described are systems and methods for providing augmented reality information to workers to assist the workers in assembly of objects, such as aerial vehicles. An object or parts of an object may be determined by processing of image data corresponding to a field of view of a pair of augmented reality glasses worn by a worker to determine an object or a part corresponding to an object that is to be assembled by the worker. Based on the determined object and/or part, augmented reality information corresponding to an assembly task may be determined and visually presented to the worker to aid the worker in completion of the assembly task. The augmented reality information may be visually presented by the augmented reality glasses such that the worker can view the augmented reality information and the object or parts concurrently.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 30, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Jason Leonard Peacock, Joshua John Watson, Scott Michael Wilcox
  • Publication number: 20190177203
    Abstract: Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Moussa N'Gom, Garrett Andrew Piech, James Joseph Watkins, Kristopher Allen Wieland, Chad Michael Wilcox
  • Patent number: 10302452
    Abstract: This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 28, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Michael Wilcox, Naimisaranya Das Busek, Trevor Joseph Myslinski Decker, Michael William Regner
  • Patent number: 10281916
    Abstract: A method, device, and system for detecting transparent elements in a vehicle environment are described. In some examples, this may include accessing an image of a scene captured by an image capture device attached to a vehicle. A reflected image present in the image may be detected. The reflected image may include a portion of the vehicle. It may be determined that the scene includes a transparent element based at least in part on detecting the reflected image present in the image.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: May 7, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Chengwu Cui, Sarah Graber, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10279927
    Abstract: Aerial vehicles may include one or more directional sensors embedded into wings, rudders, ailerons, flaps or other control surfaces. When the aerial vehicles are operating in modes that do not require the use of such surfaces, a surface having a directional sensor embedded therein may be repositioned or reoriented to align the directional sensor toward an area or axis of interest, and information may be gathered from the area or axis of interest using the directional sensor. One or more safety lights, running lights or other illuminators may cast light of a desired color, frequency or wavelength toward the area or axis of interest. The directional sensors may include cameras, radar or laser sensors, or any other reorientable sensors.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 7, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10252931
    Abstract: Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 9, 2019
    Assignee: Corning Incorporated
    Inventors: Moussa N'Gom, Garrett Andrew Piech, James Joseph Watkins, Kristopher Allen Wieland, Chad Michael Wilcox
  • Patent number: 10198955
    Abstract: Techniques for verifying a location and identification of a landing marker to aid an unmanned aerial vehicle (UAV) to deliver a payload to a location may be provided. For example, upon receiving an indication that a UAV has arrived to a delivery location, a server computer may process one or more images of an area that are provided by the UAV and/or a user interacting with a user device. A landing marker may be identified in the image and a representation of the landing marker along with instructions to guide the UAV to deliver the payload to the landing marker may be transmitted to the UAV and implemented by the UAV.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 5, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10176792
    Abstract: The implementations described include an audio canceling device that receives an unmanned aerial vehicle (“UAV”) audio signature representative of audio generated by an unmanned aerial vehicle, monitors audio within an environment in which the audio canceling device is located for audio generated by the UAV, generates an attenuation-signal based on detected audio generated by the UAV, and outputs the attenuation-signal to attenuate the audio generated by the UAV. In one example, the audio canceling device may be used to attenuate audio generated by a UAV that is permeating into a user's home during delivery of an item to the user's home by the UAV.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 8, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Michael John Elzinga, Scott Michael Wilcox
  • Patent number: 10176722
    Abstract: A location marker that may be used to provide information to a vehicle, such as an unmanned aerial vehicle (UAV). The location marker may include a plurality of lights that may be individually sequenced on and off at different times to create a time domain signal sequence that is readable by the vehicle. The lights may provide information in various different ways. The specific lights that are illuminated at a certain time may form a light pattern that includes or is associated with information. Different light patterns may be displayed over time to provide different information to the vehicle. In some embodiments, the amount of time that a light is on or off (or both) may provide information as a time domain signal sequence (e.g., flashing lights) to the vehicle. In various embodiments, the location marker may include retroreflectors arranged in a pattern used to identify the location marker.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 8, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Publication number: 20180324403
    Abstract: A propeller provided on an aerial vehicle may include a digital camera or other imaging device embedded into a surface of one of the blades of the propeller. The digital camera may capture images while the propeller is rotating at an operational speed. Images captured by the digital camera may be processed to recognize one or more objects therein, and to determine ranges to such objects by stereo triangulation techniques. Using such ranges, a depth map or other model of the surface features in an environment in which the aerial vehicle is operating may be defined and stored or used for any purpose. A propeller may include digital cameras or other imaging devices embedded into two or more blades, and may also use such images to determine ranges to objects by stereo triangulation techniques.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 8, 2018
    Inventors: Scott Patrick Boyd, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10121117
    Abstract: Techniques for providing a verification of a flight path or landing zone may be provided. For example, during delivery an unmanned aerial vehicle (UAV) may capture one or more images of a plurality of delivery locations within an area. A computer system may generate one or more image templates or filters using the one or more images and subsequently use the image filters to verify a flight path or landing zone for a delivery by the UAV during flight.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 6, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10101443
    Abstract: Aerial vehicles may be outfitted with one or more ultrasonic anemometers, each having ultrasonic transducers embedded into external surfaces. The transducers may be aligned and configured to transmit acoustic signals to one another, and receive acoustic signals from one another, along one or more paths or axes. Elapsed times of signals transmitted and received by pairs of transducers may be used to determine air speeds along the paths or axes. Where two or more pairs of transducers are provided, a net vector may be derived based on air speeds determined along the paths or axes between the pairs of the transducers, and used to generate control signals for maintaining the aerial vehicle on a desired course, at a desired speed or altitude, or in a desired orientation. The transducers may be dedicated for use in an anemometer, or may serve multiple purposes, and may be reoriented or reconfigured as necessary.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: October 16, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Louis LeRoi LeGrand, III, Gershon Parent, Scott Michael Wilcox
  • Patent number: 10096255
    Abstract: This disclosure describes an unmanned aerial vehicle (“UAV”) and system that may perform one or more techniques for protecting objects from damage resulting from an unintended or uncontrolled impact by a UAV. As described herein, various implementations utilize a damage avoidance system that detects a risk of damage to an object caused by an impact from a UAV that has lost control and takes steps to reduce or eliminate that risk. For example, the damage avoidance system may detect that the UAV has lost power and/or is falling at a rapid rate of descent such that, upon impact, there is a risk of damage to an object with which the UAV may collide. Upon detecting the risk of damage and prior to impact, the damage avoidance system activates a damage avoidance system having one or more protection elements that work in concert to reduce or prevent damage to the object upon impact by the UAV.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 9, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Jon Lewis Lindskog, Daniel Buchmueller, Samuel Park, Louis LeRoi LeGrand, III, Ricky Dean Welsh, Fabian Hensel, Christopher Aden Maynor, Ishwarya Ananthabhotla, Scott Michael Wilcox
  • Patent number: 10049589
    Abstract: Techniques for providing an object awareness guidance to clear a landing space may be provided. For example, during delivery an unmanned aerial vehicle (UAV) may capture an image of a potential landing zone and identify one or more objects in the image that may impede or obstruct delivery of the item in the potential landing zone. The UAV may be configured to generate and provide instructions to a user device to move or remove the identified one or more objects from the potential landing zone thereby creating a safe and unobstructed landing zone to deliver the item.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 14, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10032275
    Abstract: This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 24, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Joshua John Watson, Benjamin Griffin Novak, Barry James O'Brien, Scott Michael Wilcox, Benjamin Israel Caro, Scott Patrick Boyd
  • Patent number: 10033980
    Abstract: A propeller provided on an aerial vehicle may include a digital camera or other imaging device embedded into a surface of one of the blades of the propeller. The digital camera may capture images while the propeller is rotating at an operational speed. Images captured by the digital camera may be processed to recognize one or more objects therein, and to determine ranges to such objects by stereo triangulation techniques. Using such ranges, a depth map or other model of the surface features in an environment in which the aerial vehicle is operating may be defined and stored or used for any purpose. A propeller may include digital cameras or other imaging devices embedded into two or more blades, and may also use such images to determine ranges to objects by stereo triangulation techniques.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 24, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10032384
    Abstract: A location marker that may be used to provide information to a vehicle, such as an unmanned aerial vehicle (UAV). The location marker may include a plurality of retroreflectors that may form a pattern readable by a vehicle or other device. The pattern may be read to extract an identifier of a location, such as an address or an identifier of a person. A global positioning system (GPS) device may transmit a general location of the location marker to the vehicle, while the location marker may provide a unique visual location identifier to a device within visual range of the location marker. In some embodiments, the location marker may also include lights that may be individually sequenced on and off at different times to create a time domain signal sequence that is readable by the vehicle.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 24, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox