Patents by Inventor Michael William Barror

Michael William Barror has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399143
    Abstract: An antenna for an implantable medical device (IMD) is provided that is formed on the same substrate as the telemetry circuitry for the IMD. The telemetry circuitry is formed on a portion of the substrate within the interior of a housing for the IMD, while at least one antenna is formed on an exterior portion of the substrate on the exterior of the housing to allow for far field telemetry. At least one electrical interconnect is formed on the substrate for connecting the antenna to the telemetry circuitry, where the electrical interconnect may comprise a controlled impedance line to minimize loss. A conformally-shaped hermetic cover, such as a ceramic material, may be formed in a desired shape around the exterior portion of the substrate and antenna and cofired together to form a monolithic structure encasing the antenna and exterior portion of the substrate.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Joyce K. Yamamoto, Quentin Scott Denzene, Michael William Barror
  • Patent number: 8626310
    Abstract: An implantable medical device (“IMD”) is provided having an antenna and an RF telemetry module for far field telemetry communications arranged on an exterior of the IMD housing, such that telemetry signal processing may be performed on the exterior of the housing. One or more feedthrough conductive paths extend through the housing to communicatively couple the RF module to circuitry within the housing. In this manner RF module is arranged entirely external to the housing, such that only power and/or low frequency data bit signals are required to be passed through the feedthrough conductive path. This allows the feedthrough conductive path to be filtered to prevent undesired interference signals (e.g., electromagnetic interference (EMI) signals) from entering the housing through the feedthrough conductive path coupled to the RF module. In some embodiments, the antenna and RF module are formed in an integrated assembly attachable to an exterior portion of the housing.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Michael William Barror, William D. Verhoef, Joyce K. Yamamoto, Robert S. Wentink, Gregory J. Haubrich
  • Publication number: 20100168818
    Abstract: An implantable medical device (“IMD”) is provided having an antenna and an RF telemetry module for far field telemetry communications arranged on an exterior of the IMD housing, such that telemetry signal processing may be performed on the exterior of the housing. One or more feedthrough conductive paths extend through the housing to communicatively couple the RF module to circuitry within the housing. In this manner RF module is arranged entirely external to the housing, such that only power and/or low frequency data bit signals are required to be passed through the feedthrough conductive path. This allows the feedthrough conductive path to be filtered to prevent undesired interference signals (e.g., electromagnetic interference (EMI) signals) from entering the housing through the feedthrough conductive path coupled to the RF module. In some embodiments, the antenna and RF module are formed in an integrated assembly attachable to an exterior portion of the housing.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Michael William Barror, William D. Verhoef, Joyce K. Yamamoto, Robert S. Wentink, Gregory J. Haubrich
  • Publication number: 20100109966
    Abstract: An antenna for an implantable medical device (IMD) is provided including a monolithic structure derived from a plurality of discrete dielectric layers having an antenna embedded within the monolithic structure. Superstrate dielectric layers formed above the antenna may provide improved matching gradient with the surrounding environment to mitigate energy reflection effects. A outermost biocompatible layer is positioned over the superstrates as an interface with the surrounding environment. A shielding layer is positioned under the antenna to provide electromagnetic shielding for the IMD circuitry. Substrate dielectric layers formed below the antenna may possess higher dielectric values to allow the distance between the antenna and ground shielding layer to be minimized. An electromagnetic bandgap layer may be positioned between the antenna and the shielding layer.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 6, 2010
    Inventors: Duane N. Mateychuk, Joyce K. Yamamoto, Gerard J. Hill, Charles S. Farlow, Robert S. Wentink, Michael William Barror, Charles R. Gordon, Joachim Hossick-Schott, Yanzhu Zhao
  • Publication number: 20100114245
    Abstract: An antenna for an implantable medical device (IMD) is provided that is formed on the same substrate as the telemetry circuitry for the IMD. The telemetry circuitry is formed on a portion of the substrate within the interior of a housing for the IMD, while at least one antenna is formed on an exterior portion of the substrate on the exterior of the housing to allow for far field telemetry. At least one electrical interconnect is formed on the substrate for connecting the antenna to the telemetry circuitry, where the electrical interconnect may comprise a controlled impedance line to minimize loss. A conformally-shaped hermetic cover, such as a ceramic material, may be formed in a desired shape around the exterior portion of the substrate and antenna and cofired together to form a monolithic structure encasing the antenna and exterior portion of the substrate.
    Type: Application
    Filed: December 19, 2008
    Publication date: May 6, 2010
    Inventors: Joyce K. Yamamoto, Quentin Scott Denzene, Michael William Barror