Patents by Inventor Michael William Gorrilla

Michael William Gorrilla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10734186
    Abstract: An x-ray device is presented. The x-ray device includes a cathode configured to emit an electron beam. Also, the x-ray device includes an anode configured to rotate about a longitudinal axis of the x-ray device and positioned to receive the emitted electron beam, where the anode includes a target element disposed on an anode surface of the anode and a track element embedded in the target element, where the track element is configured to generate x-rays in response to the emitted electron beam impinging on a focal spot on the track element, where at least a portion of the track element is configured to transition from a first phase to a second phase based on heat generated in at least a portion of the track element, and where at least the portion of the track element is configured to distribute the generated heat across the anode.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 4, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Michael William Gorrilla
  • Patent number: 10626921
    Abstract: A hydrodynamic or liquid metal or bearing structure for an x-ray tube and associated process for operating the bearing structure is provided that includes a bearing shaft rotatably disposed in a bearing housing or sleeve. Adjacent but separated by a gap from the portion of the sleeve enclosing the thrust flange is located an electromagnet. The electromagnet can be selectively operated in order to exert a magnetic force upon a permanent magnet disposed within the sleeve on the opposite side of the gap. The force exerted on the permanent magnet in the sleeve causes the sleeve to move axially along the shaft, such that the sleeve can engage one side of the thrust flange, landing the sleeve against the thrust bearing/surface to greatly reduce the wear on the sleeve as the sleeve rotation slows.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 21, 2020
    Assignee: General Electric Company
    Inventor: Michael William Gorrilla
  • Patent number: 10535490
    Abstract: An x-ray device is presented. The x-ray device includes a cathode configured to emit an electron beam. Further, the x-ray device includes an anode having an anode surface configured to generate x-rays in response to the emitted electron beam impinging on a focal spot on the anode surface. Also, the x-ray device includes a reciprocating assembly including a drive shaft operatively coupled to the anode and a first bearing unit operatively coupled to the drive shaft, where the first bearing unit is configured to translate the anode via the drive shaft to distribute heat generated in the anode. Moreover, the x-ray device includes a first diaphragm disposed between the anode and the first bearing unit and configured to cease a flow of one or more first lubricants from the first bearing unit towards the anode.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Michael William Gorrilla
  • Patent number: 10451110
    Abstract: A hydrostatic bearing assembly or structure for an x-ray tube and associated process for manufacturing and operating the bearing assembly is provided to reduce and potentially eliminate wear from landing or takeoff of the rotating component of the bearing assembly on the non-rotating component. The shaft and sleeve are separated by a gap in which an amount of a liquid metal is placed in order to provide the sleeve with the ability to rotate about the shaft, or vice versa. The non-rotating component of the hydrostatic bearing assembly is formed with a number of fluid channels extending through the component and in communication with the gap. The liquid metal is pumped into and out of the gap via the channels under pressure supplied by a magnetohydrodynamic pump to maintain the separation of the rotating and non-rotating components of the bearing assembly.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 22, 2019
    Assignee: General Electric Company
    Inventor: Michael William Gorrilla
  • Publication number: 20190189386
    Abstract: An x-ray device is presented. The x-ray device includes a cathode configured to emit an electron beam. Also, the x-ray device includes an anode configured to rotate about a longitudinal axis of the x-ray device and positioned to receive the emitted electron beam, where the anode includes a target element disposed on an anode surface of the anode and a track element embedded in the target element, where the track element is configured to generate x-rays in response to the emitted electron beam impinging on a focal spot on the track element, where at least a portion of the track element is configured to transition from a first phase to a second phase based on heat generated in at least a portion of the track element, and where at least the portion of the track element is configured to distribute the generated heat across the anode.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventor: Michael William Gorrilla
  • Publication number: 20190162231
    Abstract: A hydrostatic bearing assembly or structure for an x-ray tube and associated process for manufacturing and operating the bearing assembly is provided to reduce and potentially eliminate wear from landing or takeoff of the rotating component of the bearing assembly on the non-rotating component. The shaft and sleeve are separated by a gap in which an amount of a liquid metal is placed in order to provide the sleeve with the ability to rotate about the shaft, or vice versa. The non-rotating component of the hydrostatic bearing assembly is formed with a number of fluid channels extending through the component and in communication with the gap. The liquid metal is pumped into and out of the gap via the channels under pressure supplied by a magnetohydrodynamic pump to maintain the separation of the rotating and non-rotating components of the bearing assembly.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventor: Michael William Gorrilla
  • Publication number: 20190162237
    Abstract: A hydrodynamic or liquid metal or bearing structure for an x-ray tube and associated process for operating the bearing structure is provided that includes a bearing shaft rotatably disposed in a bearing housing or sleeve. Adjacent but separated by a gap from the portion of the sleeve enclosing the thrust flange is located an electromagnet. The electromagnet can be selectively operated in order to exert a magnetic force upon a permanent magnet disposed within the sleeve on the opposite side of the gap. The force exerted on the permanent magnet in the sleeve causes the sleeve to move axially along the shaft, such that the sleeve can engage one side of the thrust flange, landing the sleeve against the thrust bearing/surface to greatly reduce the wear on the sleeve as the sleeve rotation slows.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventor: Michael William Gorrilla
  • Publication number: 20190148103
    Abstract: An x-ray device is presented. The x-ray device includes a cathode configured to emit an electron beam. Further, the x-ray device includes an anode having an anode surface configured to generate x-rays in response to the emitted electron beam impinging on a focal spot on the anode surface. Also, the x-ray device includes a reciprocating assembly including a drive shaft operatively coupled to the anode and a first bearing unit operatively coupled to the drive shaft, where the first bearing unit is configured to translate the anode via the drive shaft to distribute heat generated in the anode. Moreover, the x-ray device includes a first diaphragm disposed between the anode and the first bearing unit and configured to cease a flow of one or more first lubricants from the first bearing unit towards the anode.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 16, 2019
    Inventor: Michael William Gorrilla
  • Patent number: 10102999
    Abstract: A magnetic assembly for focusing an electron beam includes one or more quadrupole assemblies, each quadrupole assembly having at least a pair of separate opposing members with angular pole extensions of one opposing member facing angular pole extensions of another opposing member. An X-ray tube includes a magnetic assembly for focusing an electron beam extending from a cathode to an anode of the X-ray tube, the magnetic assembly comprising one or more quadrupole assemblies, each quadrupole assembly having at least a pair of opposing members with angular pole extensions of one opposing member facing angular pole extensions of another opposing member.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: October 16, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Michael William Gorrilla
  • Publication number: 20170287672
    Abstract: A magnetic assembly for focusing an electron beam includes one or more quadrupole assemblies, each quadrupole assembly having at least a pair of separate opposing members with angular pole extensions of one opposing member facing angular pole extensions of another opposing member. An X-ray tube includes a magnetic assembly for focusing an electron beam extending from a cathode to an anode of the X-ray tube, the magnetic assembly comprising one or more quadrupole assemblies, each quadrupole assembly having at least a pair of opposing members with angular pole extensions of one opposing member facing angular pole extensions of another opposing member.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventor: Michael William Gorrilla