Patents by Inventor Michael Wingert

Michael Wingert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125926
    Abstract: A method for providing training datasets for training an object classification model for object classification in an ultrasonic sensor system is disclosed.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 18, 2024
    Inventors: Juergen Schmidt, Lena Bendfeld, Michael Tchorzewski, Tobias Wingert, Tom Reimann
  • Patent number: 11754312
    Abstract: A damper of a heating, ventilation, and/or air conditioning (HVAC) system includes a crank configured to rotate about an axis of a shaft relative to a support, a reset arm configured to rotate about the axis of the shaft relative to the support, a spring coupled to the crank and the reset arm, and a fuse link configured to be coupled to the reset arm and the support in a set configuration and to release the reset arm from the support in response to a temperature exceeding a threshold temperature. The crank and the reset arm are configured to rotate away from the support in a first circumferential direction toward a closed configuration in response to the fuse link releasing the reset arm from the support. A spring force of the spring is configured to increase to enable the reset arm to rotate in a second circumferential direction opposite to the first circumferential direction beyond the set configuration and into a reset configuration.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: September 12, 2023
    Assignee: AIR DISTRIBUTION TECHNOLOGIES IP, LLC
    Inventors: Edward N. Koop, Vikas A. Patil, Jeffrey S. Beneke, Kent S. Maune, Michael A. Wingert
  • Patent number: 11680434
    Abstract: Damped door closer systems, door assemblies including the damped door closer systems, and methods of operating damped door closer systems. The damped door closer systems include a closer assembly and damping assembly connected to each other through a connecting arm.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: June 20, 2023
    Assignee: ANDERSEN CORPORATION
    Inventors: Mitchell Marovets, Michael Wingert, Jesse Baldwin, Kevin Kappelmann, Chris Hilligas, Peter Haugh
  • Publication number: 20220349615
    Abstract: A damper of a heating, ventilation, and/or air conditioning (HVAC) system includes a crank configured to rotate about an axis of a shaft relative to a support, a reset arm configured to rotate about the axis of the shaft relative to the support, a spring coupled to the crank and the reset arm, and a fuse link configured to be coupled to the reset arm and the support in a set configuration and to release the reset arm from the support in response to a temperature exceeding a threshold temperature. The crank and the reset arm are configured to rotate away from the support in a first circumferential direction toward a closed configuration in response to the fuse link releasing the reset arm from the support. A spring force of the spring is configured to increase to enable the reset arm to rotate in a second circumferential direction opposite to the first circumferential direction beyond the set configuration and into a reset configuration.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Inventors: Edward N. Koop, Vikas A. Patil, Jeffrey S. Beneke, Kent S. Maune, Michael A. Wingert
  • Patent number: 9842949
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 12, 2017
    Assignee: OB REALTY, LLC
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, K.-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Patent number: 9806220
    Abstract: A back contact solar cell is described which includes a semiconductor light absorbing layer; a first-level metal layer (M1), the M1 metal layer on a back side of the light absorbing layer, the back side being opposite from a front side of the light absorbing layer designed to receive incident light; an electrically insulating backplane sheet backside of said solar cell with the M1 layer, the backplane sheet comprising a plurality of via holes that expose portions of the M1 layer beneath the backplane sheet; and an M2 layer in contact with the backplane sheet, the M2 layer made of a sheet of pre-fabricated metal foil material comprising a thickness of between 5-250 ?m, the M2 layer electrically connected to the M1 layer through the via holes in the backplane sheet.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 31, 2017
    Assignee: OB REALTY, LLC
    Inventors: Mehrdad M. Moslehi, Thom Stalcup, Karl-Josef Kramer, Anthony Calcaterra, Virendra V. Rana, Sean M. Seutter, Pawan Kapur, Michael Wingert
  • Publication number: 20170133973
    Abstract: A photovoltaic system comprises a photovoltaic module attached to a photovoltaic mount frame, the mount frame having a rectangular shape. A deflector is attached to the mount frame by a rotatable deflector and mount frame attachment wherein the deflector pivots around the rotatable deflector and mount frame attachment from a nesting position under the photovoltaic module in the mount frame to an installation position raising at least a first side of the mount frame. A mount foot is attached to the deflector by a rotatable mount foot and deflector attachment wherein the mount foot pivots around the rotatable mount foot and deflector attachment from a nesting position in a mount foot nesting indention in the deflector to an installation position planar to a mounting surface.
    Type: Application
    Filed: August 8, 2016
    Publication date: May 11, 2017
    Inventors: Gianluigi Mascolo, Sam A. Cowley, Jeffrey F. Boigenzahn, Jonathan D. Albert, Steven J. Coonen, Mehrdad M. Moslehi, Michael Wingert
  • Patent number: 9515217
    Abstract: According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell is provided. Emitter and base contact regions are formed on a backside of a semiconductor wafer having a light receiving frontside and a backside opposite said frontside. A first level contact metallization is formed on the wafer backside and an electrically insulating backplane is attached to the semiconductor wafer backside. Isolation trenches are formed in the semiconductor wafer patterning the semiconductor wafer into a plurality of electrically isolated isles and the semiconductor wafer is thinned. A metallization structure is formed on the electrically insulating backplane electrically connecting the plurality of isles.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 6, 2016
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Michael Wingert
  • Patent number: 9293619
    Abstract: A back contact solar cell comprises an active semiconductor absorber for use in a back contact solar cell having a light capturing front side and a backside opposite the light capturing front side. A first interdigitated metallization is positioned over the backside of the active semiconductor absorber. The first interdigitated metallization forming base and emitter contact metallization of the back contact solar cell. A backplane is positioned over the backside of the active semiconductor absorber and the first interdigitated metallization. A second interdigitated metallization is positioned over the backplane. The second interdigitated metallization is connected to the first interdigitated metallization for extracting photovoltaic power from the active semiconductor absorber. The second interdigitated metallization has base and emitter busbars over the backplane for electrical connection.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 22, 2016
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Michael Wingert
  • Publication number: 20150207002
    Abstract: Solar cell array solutions including monolithic solar cell arrays and fabrication methods. A first patterned cell metallization contacts base and emitter regions of each of a plurality of solar cells having a light receiving frontside and a backside. An electrically insulating continuous backplane layer is attached to the backside of the solar cells and covers the first cell metallization of each of the solar cells. Via holes through the continuous backplane layer provide access to the first cell metallization. A second cell metallization is connected to the first cell metallization of each of the solar cells and electrically interconnects the solar cells in the array.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 23, 2015
    Inventors: Mehrdad M. Moslehi, Thom Stalcup, Michael Wingert, Jay Ashjaee, Pawan Kapur, Homi Fatemi
  • Publication number: 20150155398
    Abstract: Solar cell array solutions including monolithic solar cell arrays and fabrication methods. A first patterned cell metallization contacts base and emitter regions of each of a plurality of solar cells having a light receiving frontside and a backside. An electrically insulating continuous backplane layer is attached to the backside of the solar cells and covers the first cell metallization of each of the solar cells. Via holes through the continuous backplane layer provide access to the first cell metallization. A second cell metallization is connected to the first cell metallization of each of the solar cells and electrically interconnects the solar cells in the array.
    Type: Application
    Filed: September 24, 2014
    Publication date: June 4, 2015
    Inventors: Mehrdad M. Moslehi, Karl-Josef Kramer, Pawan Kapur, Thom Stalcup, Michael Wingert
  • Publication number: 20150129031
    Abstract: A back contact solar cell is described which includes a semiconductor light absorbing layer; a first-level metal layer (M1), the M1 metal layer on a back side of the light absorbing layer, the back side being opposite from a front side of the light absorbing layer designed to receive incident light; an electrically insulating backplane sheet backside of said solar cell with the M1 layer, the backplane sheet comprising a plurality of via holes that expose portions of the M1 layer beneath the backplane sheet; and an M2 layer in contact with the backplane sheet, the M2 layer made of a sheet of pre-fabricated metal foil material comprising a thickness of between 5-250 ?m, the M2 layer electrically connected to the M1 layer through the via holes in the backplane sheet.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Inventors: Mehrdad M. Moslehi, Thom Stalcup, Karl-Josef Kramer, Anthony Calcaterra, Virendra V. Rana, Sean M. Seutter, Pawan Kapur, Michael Wingert
  • Publication number: 20150020877
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 22, 2015
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Publication number: 20140370650
    Abstract: According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell using bulk wafers is provided. Emitter and base contact regions are formed on a backside of a semiconductor wafer having a light receiving frontside and a backside opposite said frontside. A first level contact metallization is formed on the wafer backside and an electrically insulating backplane is attached to the semiconductor wafer backside. Isolation trenches are formed in the semiconductor wafer patterning the semiconductor wafer into a plurality of electrically isolated isles and the semiconductor wafer is thinned. A metallization structure is formed on the electrically insulating backplane electrically connecting the plurality of isles.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 18, 2014
    Applicant: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Michael Wingert
  • Publication number: 20140060610
    Abstract: A back contact solar cell with on-cell electronics is provided. The back contact solar cell is comprised of a semiconductor substrate having a light capturing front side and a backside opposite the light capturing front side. A first interdigitated metallization pattern is positioned on the backside of the semiconductor substrate and a backplane supports and is attached to the backside of the semiconductor substrate. A second interdigitated metallization pattern positioned on the backplane and is connected to the first interdigitated metallization pattern. An on-cell electronic component is attached to the second interdigitated metallization pattern and electrical leads connect the on-cell electronic component to the second interdigitated metallization pattern.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 6, 2014
    Inventors: Mehrdad M. Moslehi, Michael Wingert
  • Publication number: 20130233378
    Abstract: A back contact back junction solar cell using semiconductor wafers and methods for manufacturing are provided. The back contact back junction solar cell comprises a semiconductor wafer having a doped base region, a light capturing frontside surface, and a doped backside emitter region. A frontside and backside dielectric layer and passivation layer provide enhance light trapping and internal reflection. Backside base and emitter contacts are connected to metal interconnects forming a metallization pattern of interdigitated fingers and busbars on the backside of the solar cell.
    Type: Application
    Filed: December 9, 2010
    Publication date: September 12, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean Seutter, Virenda V Rana, Anthony Calcaterra, Emmanuel Van Kerschaver, Duncan Harwood, Majid Mansoori, Michael Wingert
  • Publication number: 20070272365
    Abstract: A dual layer insect screen assembly for fenestration units has a first screening layer for blocking passage of insects through the fenestration unit. A second screening layer is moveable over the first screening layer to provide additional shading, light reflection, and other variable optical effects, while still allowing ventilation through the fenestration unit.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 29, 2007
    Inventors: Michael Wingert, Terry Kenkel, Shawn Miller, Korey Gearhart