Patents by Inventor Michael Xing

Michael Xing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11319592
    Abstract: The present invention relates to the field of cancer. More specifically, the present invention provides methods and compositions related to certain mutations in cancer. In one embodiment, a method for treating a subject having aggressive thyroid cancer comprises the steps of (a) obtaining a biological sample from the subject; (b) performing an assay on the sample obtained from the subject to identify a mutation at 1 295 228 C>T (C228T), corresponding to ?124 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, and a T1799A mutation in the BRAF gene that results in a V600E amino acid change; (c) identifying the subject as having or likely to develop aggressive thyroid cancer if the C228T and V600E mutations are identified; and (d) treating the subject with one or more treatment modalities appropriate for a subject having or likely to develop aggressive thyroid cancer.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: May 3, 2022
    Assignee: The Johns Hopkins University
    Inventor: Michael Xing
  • Publication number: 20210003335
    Abstract: The invention is a means of regulating how much snow is produced by a snowmaking machine based on the moisture in the environment. It utilizes a moisture sensor (such as a soil sensor), and a processor measures the resistance to determine how much snow should be made. The snow maker then receives this information and adjusts the quantity of snow that it produces. By using this invention, the value of water will be maximized and the snow will be made with the greatest efficiency.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Lincoln James Crockett, Giulio Valfre-Zaydenman, Christopher Jorgenson, Tony Zhao, Alexander Wong, Michael Xing
  • Publication number: 20170022572
    Abstract: The present invention relates to the field of cancer. More specifically, the present invention provides methods and compositions related to certain mutations in cancer. In one embodiment, a method for treating a subject having aggressive thyroid cancer comprises the steps of (a) obtaining a biological sample from the subject; (b) performing an assay on the sample obtained from the subject to identify a mutation at 1 295 228 C>T (C228T), corresponding to ?124 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, and a T1799A mutation in the BRAF gene that results in a V600E amino acid change; (c) identifying the subject as having or likely to develop aggressive thyroid cancer if the C228T and V600E mutations are identified; and (d) treating the subject with one or more treatment modalities appropriate for a subject having or likely to develop aggressive thyroid cancer.
    Type: Application
    Filed: April 1, 2015
    Publication date: January 26, 2017
    Inventor: Michael Xing
  • Publication number: 20160053331
    Abstract: We examined IQGAP1 copy gain and its relationship with clinicopathologic outcomes of thyroid cancer and investigated its role in cell invasion and molecules involved in the process. We found IQGAP1 copy number (CN) gain?3 in 1 of 30 (3%) of benign thyroid tumor, 24 of 74 (32%) follicular variant papillary thyroid cancer (FVPTC), 44 of 107 (41%) follicular thyroid cancer (FTC), 8 of 16 (50%) tall cell papillary thyroid cancer (PTC), and 27 of 41 (66%) anaplastic thyroid cancer, in increasing order of invasiveness of these tumors. A similar tumor distribution trend of CN?4 was also seen. IQGAP1 copy gain was positively correlated with IQGAP1 protein expression. It was significantly associated with extrathyroidal and vascular invasion of FVPTC and FTC and, remarkably, a 50%-60% rate of multifocality and recurrence of BRAF mutation-positive PTC (P=0.01 and 0.02, respectively). The siRNA knockdown of IQGAP1 dramatically inhibited thyroid cancer cell invasion and colony formation.
    Type: Application
    Filed: August 28, 2015
    Publication date: February 25, 2016
    Inventor: Mingzhao Michael Xing
  • Patent number: 9157123
    Abstract: We examined IQGAP1 copy gain and its relationship with clinicopathologic outcomes of thyroid cancer and investigated its role in cell invasion and molecules involved in the process. We found IQGAP1 copy number (CN) gain ?3 in 1 of 30 (3%) of benign thyroid tumor, 24 of 74 (32%) follicular variant papillary thyroid cancer (FVPTC), 44 of 107 (41%) follicular thyroid cancer (FTC), 8 of 16 (50%) tall cell papillary thyroid cancer (PTC), and 27 of 41 (66%) anaplastic thyroid cancer, in increasing order of invasiveness of these tumors. A similar tumor distribution trend of CN ?4 was also seen. IQGAP1 copy gain was positively correlated with IQGAP1 protein expression. It was significantly associated with extrathyroidal and vascular invasion of FVPTC and FTC and, remarkably, a 50%-60% rate of multifocality and recurrence of BRAF mutation-positive PTC (P=0.01 and 0.02, respectively). The siRNA knock-down of IQGAP1 dramatically inhibited thyroid cancer cell invasion and colony formation.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: October 13, 2015
    Assignee: The Johns Hopkins University
    Inventor: Mingzhao Michael Xing
  • Publication number: 20130315930
    Abstract: We examined IQGAP1 copy gain and its relationship with clinicopathologic outcomes of thyroid cancer and investigated its role in cell invasion and molecules involved in the process. We found IQGAP1 copy number (CN) gain ?3 in 1 of 30 (3%) of benign thyroid tumor, 24 of 74 (32%) follicular variant papillary thyroid cancer (FVPTC), 44 of 107 (41%) follicular thyroid cancer (FTC) 8 of 16 (50%) tall cell papillary thyroid cancer (PTC), and 27 of 41 (66%) anaplastic thyroid cancer, in increasing order of invasiveness of these tumors. A similar tumor distribution trend of CN ?4 was also seen. IQGAP1 copy gain was positively correlated with IQGAP1 protein expression. It was significantly associated with extrathyroidal and vascular invasion of FVPTC and FTC and, remarkably, a 50%-60% rate of multifocality and recurrence of BRAF mutation-positive PTC (P=0.01 and 0.02, respectively). The siRNA knock-down of IQGAP1 dramatically inhibited thyroid cancer cell invasion and colony formation.
    Type: Application
    Filed: April 15, 2011
    Publication date: November 28, 2013
    Applicant: The Johns Hopkins University
    Inventor: Mingzhao Michael Xing