Patents by Inventor Michael Y. Frankel

Michael Y. Frankel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10425322
    Abstract: A data center utilizing an architecture minimizing Internet Protocol (IP) routing therein includes one or more service edge network elements located in the data center, wherein a sub-IP network communicatively couples the one or more service edge network elements to one or more customer edge network elements located at or near demarcation points between a customer edge network and a service provider network, wherein the one or more customer edge network elements and the one or more service edge network elements are configured to provide direct user access to the data center for a plurality of users; and a control system communicatively coupled to the one or more service edge network elements and the sub-IP network, wherein the control system is configured to control resources on the sub-IP network and the data center for the plurality of users.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: September 24, 2019
    Assignee: Ciena Corporation
    Inventors: Loudon T. Blair, Joseph Berthold, Michael Y. Frankel, John P. Mateosky
  • Patent number: 10404365
    Abstract: Systems and methods for path computation in an optical network include obtaining optical layer characteristics related to one or more optical paths in the optical network based in part on performance measurements in the optical network; responsive to service establishment or service restoration, determining a path from source to destination based on utilizing the optical layer characteristics to confirm physical validity of the path; and provisioning a service on the determined path from the source to the destination in the optical network.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 3, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Loudon T. Blair, Christian Bourget, Lyndon Y. Ong, David Weldon Boertjes, Jamie Gaudette
  • Publication number: 20190215586
    Abstract: A method, a controller, and an optical network element are configured to perform steps of monitoring one or more optical links each formed by optical transceivers which are configured to provide variable capacity via a plurality of modulation formats; based on the monitoring, causing corresponding optical transceivers for the one or more optical links to operate at a first modulation format different from a second modulation format providing excess capacity; and mapping the excess capacity to bandwidth useable by one or more services managed by the one or more of the management system, the management plane, and the control plane.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Gerard L. Swinkels, James Harley, David W. Boertjes, David Miedema, Michel Belanger, Paul A. Littlewood, John P. Mateosky, Michael Y. Frankel, Kevin S. Meagher
  • Patent number: 10348410
    Abstract: Systems and methods for operating an optical modem include operating with first operating settings; and, responsive to detection or expectation of a disturbance in an operating condition associated with the optical modem, operating with second operating settings for a time period based on statistical properties of the disturbance. The systems and methods can further include reverting to the first operating settings after the time period. The disturbance can be a polarization transient or a transient affecting a laser or a clock. The second operating settings can cause a reduced margin relative to the first operating settings for the time period.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: July 9, 2019
    Assignee: Ciena Corporation
    Inventors: Douglas W. Charlton, Andrew D. Shiner, Eric Maniloff, Michael Y. Frankel
  • Publication number: 20190182180
    Abstract: A cross-point switch system forming an adaptive communication network between a plurality of switches includes a plurality of ports connected to the plurality of switches, wherein the plurality of switches are connected to one another via a Port Aggregation Group (PAG) comprising multiple ports with a same set of endpoints between two switches; and a cross-point switch fabric configured to connect the plurality of ports between one another, wherein the cross-point switch fabric is configured to rearrange bandwidth in a PAG due to congestion thereon without packet loss.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Michael Y. FRANKEL, Vladimir PELEKHATY, John P. MATEOSKY
  • Patent number: 10313014
    Abstract: An optical transceiver includes a transmitter including transmitter signal processing circuitry configured to receive a transmit signal and provide two drive voltage signals V1, V2 to a modulator configured to modulate a laser based thereon; and a receiver including i) optical couplers configured to coherently combine received signals with a Local Oscillator (LO) formed by the laser and provide the combined signals to photodetectors for balanced detection, and ii) receiver signal processing circuitry configured to demodulate outputs from the balanced detection, wherein the receiver signal processing circuitry comprises an analog front-end and digital back-end.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: June 4, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Vladimir Pelekhaty
  • Patent number: 10313021
    Abstract: An optical transceiver includes an optical transmitter configured with data pre-coding to support integrating and resetting functions in a corresponding self-resetting integrating optical receiver; and a self-resetting integrating optical receiver comprising dual photodetectors connected to a capacitor, wherein the dual photodetectors and the capacitor are configured to perform the integrating and resetting functions based on a pre-coded optical input from a corresponding optical transmitter. The data pre-coding can include a 0 differential phase indicative of a 1 bit to set a charge on the capacitor for setting function, +/??/2 differential phase indicative of a hold so that the charge on the capacitor is held at a previous value by delivering equal intensity to the dual photodetectors for a holding function, and a ? differential phase indicative of a 0 bit to reset the charge on the capacitor to zero for resetting function.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 4, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Vladimir Pelekhaty
  • Publication number: 20190158939
    Abstract: An optical reshuffler system for implementing a flat, highly connected optical network for data center and High-Performance Computing applications includes a first optical reshuffler having a plurality of ports each configured to optically connect to a corresponding switch and having internal connectivity which optically connect each of the plurality of ports internal to the first optical reshuffler such that each port connects to one other port for switch interconnection, wherein the internal connectivity in the first optical reshuffler and ports follow rules by which subtending switches are added to corresponding ports provide a topology for the flat, highly connected optical network.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Inventors: Michael Y. Frankel, Vladimir Pelekhaty
  • Patent number: 10274682
    Abstract: A system for providing optical connections that may include an optical grating structure and an optical waveguide coupled to the optical grating structure. The optical grating structure may be configured to receive an optical wave, through an interposer, from an optical source. The optical grating structure may be configured to transform the optical wave into a predetermined electromagnetic propagation mode.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 30, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, John P. Mateosky, Vladimir Pelekhaty
  • Patent number: 10257596
    Abstract: A method, a network element, and a network include determining excess margin relative to margin needed to ensure performance at a nominal guaranteed rate associated with a flexible optical modem configured to communicate over an optical link; causing the flexible optical modem to consume most or all of the excess margin, wherein the capacity increased above the nominally guaranteed rate includes excess capacity; and mapping the excess capacity to one or more logical interfaces for use by a management system, management plane, and/or control plane. The logical interfaces can advantageously be used by the management system, management plane, and/or control plane as one of restoration bandwidths or short-lived bandwidth-on-demand (BOD) connections, such as sub-network connections (SNCs) or label switched paths (LSPs).
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: April 9, 2019
    Assignee: Ciena Corporation
    Inventors: Gerard L. Swinkels, James Harley, David W. Boertjes, David Miedema, Michel Belanger, Paul A. Littlewood, John P. Mateosky, Michael Y. Frankel, Kevin S. Meagher
  • Publication number: 20190097730
    Abstract: A storage system includes a connection to one or more optical transceivers, each having one or more Field Programmable Gate Arrays (FPGAs); and a processor and memory storing instructions that, when executed, cause the processor to receive a request for one or more applications for a specific optical transceiver of the one or more optical transceivers, and provide the one or more applications to the specific optical transceiver, wherein the one or more applications are utilized in the specific optical transceiver to dynamically configure digital functionality in its one or more FPGAs for operation in an optical network.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventors: Michael Y. Frankel, Stephen B. Alexander
  • Publication number: 20190097728
    Abstract: An optical transceiver includes a transmitter including transmitter signal processing circuitry configured to receive a transmit signal and provide two drive voltage signals V1, V2 to a modulator configured to modulate a laser based thereon; and a receiver including i) optical couplers configured to coherently combine received signals with a Local Oscillator (LO) formed by the laser and provide the combined signals to photodetectors for balanced detection, and ii) receiver signal processing circuitry configured to demodulate outputs from the balanced detection, wherein the receiver signal processing circuitry comprises an analog front-end and digital back-end.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Michael Y. FRANKEL, Vladimir PELEKHATY
  • Patent number: 10239749
    Abstract: An electrical cross-point switch N inputs, each at least 10 Gbps, connected to input transmission lines; M outputs, each at least 10 Gbps, connected to output transmission lines; at least two Radio Frequency (RF) Microelectromechanical systems (MEMS) switches selectively interconnecting each input transmission line and each output transmission line; and control and addressing circuitry configured to selectively control interconnection of each input transmission line and each output transmission line via the at least two RF MEMS switches. The at least two RF MEMS switches can be embedded in each input transmission line and each output transmission line. The input transmission lines and the output transmission lines can each be partially shielded microwave transmission lines.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 26, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, John P. Mateosky
  • Patent number: 10212496
    Abstract: A high port count switching module includes a plurality of switching circuits disposed on a glass interposer, wherein the plurality of switching circuits each include cross-point switches configured to perform switching at a full signal rate; and a plurality of optical transceivers disposed on the glass interposer and communicatively coupled to the plurality of switching circuits. The glass interposer has i) a low dielectric loss, relative to a silicon, organic, or ceramic interposer, to allow wideband data transmission, ii) a smooth surface, resulting in smooth metal traces to minimize high-frequency skin effect loss, iii) a coefficient of thermal expansion that is matched to the plurality of switching circuits to minimize stresses, and iv) thermal isolation among the plurality of switching circuits due to low thermal conductivity of glass.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: February 19, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, John P. Mateosky, Vladimir Pelekhaty
  • Patent number: 10200305
    Abstract: A data center network utilizing a single layer architecture includes a plurality of switches each with a plurality of ports including a first set of ports of the plurality of ports including network facing ports and a second set of ports of the plurality of ports including server facing ports; and a plurality of optical reshufflers configured to randomly interconnect the plurality of switches via the network facing ports of each in a single layer, unstructured network based on a plurality of structural constraints. The value of a number of the network facing ports is equal or greater than a number of the server facing ports and wherein each of the plurality of switches is a switch with attached servers. The plurality of optical reshufflers can be spatially partitioned across a layer with each optical reshuffler restricted to internal connectivity.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 5, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Vladimir Pelekhaty
  • Patent number: 10194221
    Abstract: A high capacity node includes a plurality of receiver sections and a plurality of transmitter sections; and an electrical switching fabric between the plurality of receiver sections and the plurality of transmitter sections, wherein each of the plurality of receiver sections and the plurality of transmitter sections interface the electrical switching fabric at a full signal level and the electrical switching fabric is configured to perform flow switching on the full signal level between respective receiver sections and transmitter sections, and wherein the plurality of receiver sections, the plurality of transmitter sections, and one or more stages of the electrical switching fabric are implemented in one or more optoelectronic integrated circuits.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: January 29, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, John P. Mateosky, Michael H. Shahine, Joseph Berthold
  • Patent number: 10171169
    Abstract: A software programmable optical transceiver includes one or more Field Programmable Gate Arrays (FPGAs); and an electro-optical front end communicatively coupled to the one or more FPGAs, wherein the electro-optical front end comprises a transmitter and a receiver, wherein the transmitter is adapted to transmit a transmit signal from the one or more FPGAs and the receiver is adapted to receive a receive signal and provide to the one or more FPGAs, wherein one or more applications are utilized to dynamically configure the one or more FPGAs for digital functionality to operate the software programmable optical transceiver in an associated mode. The one or more applications are loaded as needed to configure the software programmable optical transceiver in the associated mode, without requiring pre-programmed hardware in the software programmable optical transceiver for operation in a plurality of operating modes.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: January 1, 2019
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Stephen B. Alexander
  • Patent number: 10141926
    Abstract: An electrical switch circuit adapted to switch digital, high-speed signals with low power includes a plurality of input buffers each coupled to an input transmission line of a plurality of input transmission lines, wherein each input buffer utilizes a digital inverter; a plurality of output buffers each coupled to an output transmission line of a plurality of output transmission lines, wherein each output buffer utilizes a digital inverter; and a plurality of switches each coupled to an associated input transmission line and an associated output transmission line, wherein each of the input transmission line, the output transmission line, and the plurality of switches are in a single line configuration. For the low power, each of the input buffers, the output buffers, the input transmission lines, and the output transmission lines can be unterminated.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: November 27, 2018
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, Vladimir Pelekhaty
  • Patent number: 10142092
    Abstract: An optical transceiver configured to interface a composite signal in a parallelized manner includes a plurality of transmitters each configured to transmit a part of the composite signal over a first optical fiber; a plurality of receivers each configured to receive a part of the composite signal over a second optical fiber; a clock forwarding mechanism configured to provide a transmitted optical clock for all of the plurality of transmitters; and a clock recovery mechanism configured to receive a received optical clock for all of the plurality of receivers.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: November 27, 2018
    Assignee: Ciena Corporation
    Inventors: Vladimir Pelekhaty, Michael Y. Frankel
  • Publication number: 20180191432
    Abstract: Systems and methods for path computation in an optical network include obtaining optical layer characteristics related to one or more optical paths in the optical network based in part on performance measurements in the optical network; responsive to service establishment or service restoration, determining a path from source to destination based on utilizing the optical layer characteristics to confirm physical validity of the path; and provisioning a service on the determined path from the source to the destination in the optical network.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Michael Y. Frankel, Loudon T. Blair, Christian Bourget, Lyndon Y. Ong, David Weldon Boertjes, Jamie Gaudette