Patents by Inventor Michael Zalutsky

Michael Zalutsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250177580
    Abstract: Small molecule radiohalogenated PSMA inhibitors and metal complexes thereof and their use in radioimaging and radiotherapy for treating PSMA-related diseases, including prostate cancer, are disclosed. The combination of small molecule radiohalogenated PSMA inhibitors with a competitive PSMA ligand for reducing off-target accumulation of the radiohalogenated PSMA inhibitor also is disclosed.
    Type: Application
    Filed: December 3, 2024
    Publication date: June 5, 2025
    Inventors: Martin G. Pomper, Ronnie C. Mease, Vivek Kumar, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Patent number: 12233137
    Abstract: Small molecule radiohalogenated PSMA inhibitors and metal complexes thereof and their use in radioimaging and radiotherapy for treating PSMA-related diseases, including prostate cancer, are disclosed. The combination of small molecule radiohalogenated PSMA inhibitors with a competitive PSMA ligand for reducing off-target accumulation of the radiohalogenated PSMA inhibitor also is disclosed.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: February 25, 2025
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Martin G. Pomper, Ronnie C. Mease, Vivek Kumar, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Publication number: 20250057996
    Abstract: Small molecule radiohalogenated PSMA inhibitors and metal complexes thereof and their use in radioimaging and radiotherapy for treating PSMA-related diseases, including prostate cancer, are disclosed. The combination of small molecule radiohalogenated PSMA inhibitors with a competitive PSMA ligand for reducing off-target accumulation of the radiohalogenated PSMA inhibitor also is disclosed.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 20, 2025
    Inventors: Martin G. Pomper, Ronnie C. Mease, Vivek Kumar, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Publication number: 20240140971
    Abstract: PSMA binding scaffolds with radioiodinated, radiobrominated and radioastatinated labeled prosthetic groups are disclosed. Pharmaceutical compositions and methods of treating PSMA expressing cells or tumors also are disclosed.
    Type: Application
    Filed: June 14, 2023
    Publication date: May 2, 2024
    Inventors: Martin G. Pomper, Ronnie C. Mease, Ying Chen, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Patent number: 11813340
    Abstract: Small molecule radiohalogenated PSMA inhibitors and metal complexes thereof and their use in radioimaging and radiotherapy for treating PSMA-related diseases, including prostate cancer, are disclosed. The combination of small molecule radiohalogenated PSMA inhibitors with a competitive PSMA ligand for reducing off target accumulation of the radiohalogenated PSMA inhibitor also is disclosed.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 14, 2023
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Martin G. Pomper, Ronnie C. Mease, Vivek Kumar, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Publication number: 20210220493
    Abstract: Small molecule radiohalogenated PSMA inhibitors and metal complexes thereof and their use in radioimaging and radiotherapy for treating PSMA-related diseases, including prostate cancer, are disclosed. The combination of small molecule radiohalogenated PSMA inhibitors with a competitive PSMA ligand for reducing off target accumulation of the radiohalogenated PSMA inhibitor also is disclosed.
    Type: Application
    Filed: February 6, 2019
    Publication date: July 22, 2021
    Inventors: Martin G. Pomper, Ronnie C. Mease, Vivek Kumar, Sangeeta Ray, Michael Zalutsky, Ganesan Vaidyanathan
  • Patent number: 9839704
    Abstract: Prosthetic compounds are disclosed that are effective for radiolabeling biomolecules with 18F. Representative biomolecules include antibodies (e.g., monoclonal antibodies (mAbs) and nanobodies (sdAbs)), antibody fragments, and peptides that may have an affinity for particular types of cells, such as cancer cells. The prosthetic compounds effectively address the art-recognized difficulties associated with the retention of radioactivity within the targeted cells, due to internalization of the biomolecule, followed by proteolytic degradation. Representative prosthetic compounds include (i) a succinimidyloxycarbonyl moiety, (ii) a radioactive moiety bearing 18F, and (iii) a charged moiety, i.e., a moiety that is charged under the physiological conditions of the internal cell environment.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 12, 2017
    Assignee: Duke University
    Inventors: Michael Zalutsky, Ganesan Vaidyanathan
  • Publication number: 20160074541
    Abstract: Prosthetic compounds are disclosed that are effective for radiolabeling biomolecules with 18F. Representative biomolecules include antibodies (e.g., monoclonal antibodies (mAbs) and nanobodies (sdAbs)), antibody fragments, and peptides that may have an affinity for particular types of cells, such as cancer cells. The prosthetic compounds effectively address the art-recognized difficulties associated with the retention of radioactivity within the targeted cells, due to internalization of the biomolecule, followed by proteolytic degradation. Representative prosthetic compounds include (i) a succinimidyloxycarbonyl moiety, (ii) a radioactive moiety bearing 18F, and (iii) a charged moiety, i.e., a moiety that is charged under the physiological conditions of the internal cell environment.
    Type: Application
    Filed: May 2, 2014
    Publication date: March 17, 2016
    Inventors: Michael Zalutsky, Ganesan Vaidyanathan
  • Publication number: 20110217231
    Abstract: A method of treating lymphoma in a subject comprises administering to a subject afflicted with lymphoma an antibody that binds to tenascin in a therapeutically effective amount. Preferably the antibody is monoclonal antibody 81C6 or an antibody that binds to the epitope bound by monoclonal antibody 81C6. Preferably the antibody is labeled with or conjugated to a chemotherapeutic agent, particularly a radioisotope such as 131I.
    Type: Application
    Filed: December 20, 2007
    Publication date: September 8, 2011
    Applicant: Duke University
    Inventors: David Rizzieri, Darell D. Bigner, Michael Zalutsky
  • Publication number: 20060257317
    Abstract: Disclosed herein is a method of treating a tumor by administering to the subject a treatment effective amount of a therapeutic antibody and an alkylating agent.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 16, 2006
    Applicant: Duke University
    Inventors: Darell Bigner, Michael Zalutsky
  • Publication number: 20060127311
    Abstract: Disclosed is a method for dosimetry estimation for a region of interest at or around a surgically created resection cavity in a subject. These methods enable medical practitioners to estimate the amount of administered Radioimmunotherapy (RIT) agent needed to safely and effectively achieve a final Radiation Absorbed Dose (RAD). Furthermore, computer hardware and software are provided herein, so that the methods according to the invention may be automated for more efficient use. Also disclosed is a method of enhancing delivery of therapeutic antibodies that specifically bind to an extracellular stromal constituent of a tumor in a mammalian subject. The method comprises administering to a subject an effective dosage of a blocking antibody, said blocking antibodies specifically binding to said extracellular stromal constituent and blocking the binding of therapeutic antibodies to non-target tissue.
    Type: Application
    Filed: November 16, 2005
    Publication date: June 15, 2006
    Applicant: Duke University
    Inventors: David Rizzieri, Darell Bigner, Michael Zalutsky, Gamal Akabani-Hneide
  • Publication number: 20020187100
    Abstract: A method of treating lymphoma in a subject comprises administering to a subject afflicted with lymphoma an antibody that binds to tenascin in a therapeutically effective amount. Preferably the antibody is monoclonal antibody 81C6 or an antibody that binds to the epitope bound by monoclonal antibody 81C6. Preferably the antibody is labeled with or conjugated to a chemotherapeutic agent, particularly a radioisotope such as 131I.
    Type: Application
    Filed: October 19, 2001
    Publication date: December 12, 2002
    Inventors: David Rizzieri, Darell D. Bigner, Michael Zalutsky