Patents by Inventor Michael Zenge

Michael Zenge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150282764
    Abstract: In a method for computing MR images of an examination object that performs a cyclic movement, MR signals are detected over at least two cycles of the cyclic movement. In each of these cycles, data for multiple MR images are recorded. Over these cycles, a magnetization of the examination object that influences the MR images approaches a state of equilibrium in a second of these cycles is closer to the state of equilibrium than in a first of these cycles. Movement information for various movement phases of the cyclic movement of the examination object is determined using the MR images from the second cycle, with movement information of the examination object determined for each of the various movement phases. Movement correction of the examination object is carried out in the MR images of the first cycle using the movement information determined in the second cycle.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 8, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Michaela Schmidt, Peter Speier, Aurelien Stalder, Michael Zenge
  • Patent number: 9097780
    Abstract: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: August 4, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jun Liu, Zhili Yang, Mariappan S. Nadar, Nirmal Janardhanan, Michael Zenge, Edgar Mueller, Qiu Wang, Axel Loewe
  • Publication number: 20150108978
    Abstract: A computer-implemented method of selecting a Magnetic Resonance Imaging (MRI) sampling strategy includes selecting a base variable-density sampling pattern and determining a scan time associated with the base variable-density sampling pattern. A modified variable-density sampling pattern is created by modifying one or more parameters of the base variable-density sampling pattern to maximize a sampled k-space area without increasing the scan time. Next, a scan is performed on an object of interest using the modified variable-density sampling pattern to obtain a sparse MRI dataset. Then a sparse reconstruction process is applied to the sparse MRI dataset to yield an image of the object of interest.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 23, 2015
    Inventors: Qiu Wang, Michael Zenge, Edgar Mueller, Mariappan S. Nadar
  • Publication number: 20150097563
    Abstract: In a method to control a magnetic resonance imaging system to generate magnetic resonance image data of an examination subject, raw magnetic resonance data are acquired that include measurement values at multiple readout points in k-space. The readout points are arranged along a readout axis in k-space as readout pairs with a predetermined pair spacing relative to one another. Readout pairs that are adjacent in k-space along the readout axis have a sampling interval that is different than the pair spacing, which sampling interval varies along the readout axis. A control sequence determination system is designed to determine a control sequence for a magnetic resonance imaging system that is designed to control the magnetic resonance imaging system according to this method, and a magnetic resonance imaging system that has a control device designed to control the magnetic resonance imaging system according to such a method.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 9, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventor: Michael Zenge
  • Publication number: 20150054505
    Abstract: Magnetic resonance imaging uses regularized SENSE reconstruction for a reduced field of view, but minimizes folding artifacts. A reference scan is oversampled relative to the reduced field of view. The oversampling provides coil sensitivity information for a region greater than the reduced field of view. The reconstruction of the object for the reduced field of view using the coil sensitivities for the larger region may have fewer folding artifacts.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 26, 2015
    Inventors: Qiu Wang, Derya Gol, Michael Zenge, Marcel Dominik Nickel, Edgar Müller, Mariappan S. Nadar
  • Patent number: 8948480
    Abstract: A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 3, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jun Liu, Jeremy Rapin, Alban Lefebvre, Mariappan S. Nadar, Ti-chiun Chang, Michael Zenge, Edgar Müller
  • Publication number: 20150015691
    Abstract: In a method and apparatus for the generation of image data of a moving subject, raw data are initially acquired for a region comprising the subject at different measurement points in time in different movement phases of the subject. A reconstruction then takes place of multiple interim image data sets of the subject from the raw data that are respectively associated with different movement phases of the subject. Deviation data are then determined between the interim image data sets of the different movement phases of the subject, and the reconstruction of image data from raw data of different movement phases then takes place under consideration of the deviation data.
    Type: Application
    Filed: April 3, 2014
    Publication date: January 15, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Christoph Forman, Michael Zenge
  • Patent number: 8879809
    Abstract: A method to process medical image data has the following features. Immediately compressed raw data are acquired by an imaging medical technology apparatus. The compressed raw data are stored. In addition to the compressed raw data, processing data are stored which are provided to generate output data from the compressed raw data, wherein the file size of the compressed raw data and the processing data in total is less than the file size of the output data.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Edgar Müller, Peter Speier, Michael Zenge
  • Patent number: 8879852
    Abstract: A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{??(f)?1 subject to ?Af?y?2??}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Schmitt, Edgar Mueller
  • Patent number: 8867756
    Abstract: An auscultation apparatus including an optical microphone is proposed. Optical microphones can reliably acquire sounds of the most disparate frequencies even in an environment permeated by electromagnetic fields, without influencing said fields. Such an optical microphone of an auscultation apparatus can be disposed inside a medical examination and diagnostic device during operation. Given a suitable arrangement, both the heart sounds and the respiratory sounds of a patient can be recorded and monitored already with just one optical microphone.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 21, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Zenge
  • Patent number: 8848993
    Abstract: In a method and a magnetic resonance (MR) system to generate MR images based on an MR measurement of the magnetic resonance system, MR data are acquired in three-dimensional k-space along straight lines proceeding in parallel. Each of these lines is defined by a point in a plane which intersects each line and that is situated orthogonal to each line. The points in the plane are arranged such that a distribution of the points obeys spiral phyllotaxis.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Zenge
  • Patent number: 8798942
    Abstract: In a method and a device for phase-sensitive flow measurement of a volume segment of an examination subject in a measurement system, the volume segment is divided into multiple partial volume segments and the following steps are executed repeatedly until the volume segment has been completely measured: movement of a table such that a center of one of the partial volume segments to be measured essentially corresponds to the isocenter of the magnetic resonance system, and implementation of the phase-sensitive flow measurement for the partial volume segment to be measured while the center of the partial volume segment essentially corresponds to the isocenter.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 5, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Edgar Mueller, Michael Zenge
  • Patent number: 8749233
    Abstract: In a method and magnetic resonance (MR) apparatus for combining MR signals that were acquired with different acquisition coils from a region of an examination subject at least two MR signals that are based on MR signals acquired with at least two different acquisition coils are provided to a processor. Due to the spatially differing arrangement of the respective acquisition coils, the at least two MR signals image the region of the examination subject with different sensitivity profiles. The provided MR signals are combined, such that unwanted MR signal portions are suppressed, to form a combined MR signal with the suppression of unwanted MR signal portions being implemented by MR signal portions that were acquired with an acquisition coil that detects the unwanted MR signal portions with increased sensitivity in comparison to other acquisition coils being weighted less in the combined MR signal than other MR signal portions.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: June 10, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Arne Littmann, Davide Piccini, Michael Zenge
  • Publication number: 20140133724
    Abstract: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 15, 2014
    Applicants: Siemens Aktiengesellschaft, Siemens Corporation
    Inventors: Jun Liu, Zhili Yang, Mariappan S. Nadar, Nirmal Janardhanan, Michael Zenge, Edgar Mueller, Qiu Wang, Axel Loewe
  • Publication number: 20140133716
    Abstract: In a method and a magnetic resonance (MR) system to generate MR images based on an MR measurement of the magnetic resonance system, MR data are acquired in three-dimensional k-space along straight lines proceeding in parallel. Each of these lines is defined by a point in a plane which intersects each line and that is situated orthogonal to each line. The points in the plane are arranged such that a distribution of the points obeys spiral phyllotaxis.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventor: Michael Zenge
  • Publication number: 20140097845
    Abstract: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.
    Type: Application
    Filed: September 16, 2013
    Publication date: April 10, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Jun Liu, Qiu Wang, Mariappan Nadar, Michael Zenge, Edgar Mueller
  • Publication number: 20140088899
    Abstract: A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing a matrix A of sliding blocks of a 3D image of coil calibration data, calculating a left singular matrix V? from a singular value decomposition of A corresponding to ? leading singular values, calculating P=V?V?H, calculating a matrix S that is an inverse Fourier transform of a zero-padded matrix P, and solving MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M = ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ? ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) ? ? … ? ? ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
    Type: Application
    Filed: September 27, 2013
    Publication date: March 27, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Jun Liu, Hui Xue, Marcel Dominik Nickel, Ti-chiun Chang, Mariappan S. Nadar, Alban Lefebvre, Edgar Mueller, Qiu Wang, Zhili Yang, Nirmal Janardhanan, Michael Zenge
  • Publication number: 20140086469
    Abstract: A method of image reconstruction for a magnetic resonance imaging (MRI) system having a plurality of coils includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, determining a respective coil sensitivity profile for the region for each coil of the plurality of coils, and iteratively reconstructing dynamic images for the region from the k-space scan data via an optimization of a minimization problem. The minimization problem is based on the determined coil sensitivity profiles and redundant Haar wavelet transforms of the dynamic images.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Alban Lefebvre, Jun Liu, Edgar Mueller, Mariappan S. Nadar, Michaela Schmidt, Michael Zenge, Qiu Wang
  • Patent number: 8675942
    Abstract: A reconstructed image is rendered from a set of MRI data by first estimating an image with an area which does not contain artifacts or has an artifact with a relative small magnitude. Corresponding data elements in the estimated image and a trial image are processed, for instance by multiplication, to generate an intermediate data set. The intermediate data set is transformed and minimized iteratively to generate a reconstructed image that is free or substantially free of artifacts. In one embodiment a Karhunen-Loeve Transform (KLT) is used. A sparsifying transformation may be applied to generate the reconstructed image. The sparsifying transformation may be also not be applied.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 18, 2014
    Assignees: Siemens Aktiengesellschaft, National Institutes of Health
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Speier, Edgar Müller, Michael S. Hansen
  • Patent number: 8648594
    Abstract: For radial data acquisition in three-dimensional k-space in an MR measurement for a magnetic resonance system, data in k-space are acquired along straight-line spokes. Each of the spokes is thereby defined by a point on a sphere and the center point of this sphere, wherein the center point corresponding to the center of k-space. The points are arranged on the sphere such that a distribution of the points obeys the spiral phyllotaxis, in particular the Fibonacci phyllotaxis.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 11, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Davide Piccini, Michael Zenge