Patents by Inventor Michael Ziman

Michael Ziman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150191781
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 9, 2015
    Inventors: Michael ZIMAN, Colleen Davis
  • Publication number: 20130344491
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: May 17, 2013
    Publication date: December 26, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: MICHAEL ZIMAN, COLLEEN DAVIS
  • Publication number: 20120208199
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael ZIMAN, Colleen P. Davis
  • Publication number: 20100297728
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: May 28, 2010
    Publication date: November 25, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: MICHAEL ZIMAN, COLLEEN P. DAVIS
  • Publication number: 20070255053
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 1, 2007
    Applicant: ROSETTA INPHARMATICS LLC
    Inventors: Michael Ziman, Colleen Davis
  • Patent number: 7229765
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3? bias in the sequences of the nucleic acid population amplified.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: June 12, 2007
    Assignee: Rosetta Inpharmatics LLC
    Inventors: Michael Ziman, Colleen P. Davis
  • Patent number: 7078169
    Abstract: The present invention relates to methods of identifying genes whose expression is indicative of activation of a particular biochemical or metabolic pathway or a common set of biological reactions or functions in a cell (“regulon indicator genes”) The present invention provides an example of such an indicator gene. The present invention also relates to methods of partially characterizing a gene of unknown function by determining which biological pathways, reactions or functions its expression is associated with, thereby placing the gene within a functional genetic group or “regulon”. These partially characterized genes may be used to identify desirable therapeutic targets of biological pathways of interest (“regulon target genes”) The present invention provides examples of such target genes. Methods for identifying effectors (activators and inhibitors) of regulon target genes are provided. The present invention also provides examples of regulon target gene inhibitors.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: July 18, 2006
    Assignee: Rosetta Inpharmatics LLC
    Inventors: Matthew Ashby, Stewart Scherer, John W. Phillips, Michael Ziman, Nicholas Marini
  • Publication number: 20040081978
    Abstract: A random-primed reverse transcriptase-in vitro transcription method of linearly amplifying RNA is provided. According to the methods of the invention, source RNA (or other single-stranded nucleic acid), preferably, mRNA, is converted to double-stranded cDNA using two random primers, one of which comprises a RNA polymerase promoter sequence (“promoter-primer”), to yield a double-stranded cDNA that comprises a RNA polymerase promoter that is recognized by a RNA polymerase. Preferably, the primer for first-strand cDNA synthesis is a promoter-primer and the primer for second-strand cDNA synthesis is not a promoter-primer. The double-stranded cDNA is then transcribed into RNA by the RNA polymerase, optimally in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods produce linearly amplified RNA with little or no 3′ bias in the sequences of the nucleic acid population amplified.
    Type: Application
    Filed: November 13, 2003
    Publication date: April 29, 2004
    Inventors: Michael Ziman, Collen P. Davis
  • Publication number: 20030093226
    Abstract: The present invention relates to methods of identifying genes whose expression is indicative of activation of a particular biochemical or metabolic pathway or a common set of biological reactions or functions in a cell (“regulon indicator genes”) The present invention provides an example of such an indicator gene. The present invention also relates to methods of partially characterizing a gene of unknown function by determining which biological pathways, reactions or functions its expression is associated with, thereby placing the gene within a functional genetic group or “regulon”. These partially characterized genes may be used to identify desirable therapeutic targets of biological pathways of interest (“regulon target genes”) The present invention provides examples of such target genes. Methods for identifying effectors (activators and inhibitors) of regulon target genes are provided. The present invention also provides examples of regulon target gene inhibitors.
    Type: Application
    Filed: July 26, 2002
    Publication date: May 15, 2003
    Applicant: Rosetta Inpharmatics, Inc.
    Inventors: Matthew Ashby, Stewart Scherer, John W. Phillips, Michael Ziman, Nicholas Marini