Patents by Inventor Michael Zung
Michael Zung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12089868Abstract: Methods of performing an atherectomy using an atherectomy catheter. The atherectomy catheter may include a catheter body, a driveshaft, and a distal tip assembly. The driveshaft may include an annular cutting ring with a distal cutting edge. A long axis of the annular cutting ring can be configured to be parallel to a longitudinal axis of the distal tip assembly when the distal tip assembly is deflected with respect to the catheter body. The methods may include advancing the atherectomy catheter within a vessel lumen; axially moving the driveshaft relative to the catheter body to deflect the distal tip assembly with respect to the catheter body and radially extend the distal cutting edge of the annular cutting ring relative to the distal end of the catheter body; driving the distal cutting edge against a wall of the vessel lumen to remove tissue.Type: GrantFiled: June 20, 2023Date of Patent: September 17, 2024Assignee: Avinger, Inc.Inventors: Michael H. Rosenthal, Michael Zung, Nicholas J. Spinelli, Charles W. McNall, John B. Simpson, John F. Black
-
Patent number: 12053260Abstract: A system for imaging a body lumen includes a controller and a display. The controller is configured to connect to a proximal end of a catheter having an optical fiber extending along the length of an elongate catheter body. The controller is further configured to rotate a distal end of the optical fiber from a location near a proximal end of the elongate catheter body, acquire optical coherence tomography (OCT) images using the optical fiber as the distal end of the optical fiber rotates, and determine a rotational lag of the distal end of the optical fiber. The display is configured to display one or more OCT images corrected for the rotational lag.Type: GrantFiled: July 30, 2020Date of Patent: August 6, 2024Assignee: Avinger, Inc.Inventors: Maegan K. Spencer, Christopher B. White, Charles W. McNall, Dennis W. Jackson, Michael Zung, Nicholas J. Spinelli, Benjamin Ngo, Evangeline Lumabas, Kin F. Chan, John F. Black, Michael H. Rosenthal, John B. Simpson
-
Publication number: 20240148253Abstract: A catheter device for crossing occlusions includes an elongate body, a central lumen extending within the elongate body from the proximal end to the distal end, a rotatable tip at the distal end of the elongate body, and an OCT imaging sensor. The rotatable tip is configured to rotate relative to the elongate body. The OCT imaging sensor includes an optical fiber coupled with the rotatable tip and configured to rotate therewith. A distal end of the elongate body includes one or more markers configured to occlude the OCT imaging sensor as it rotates. A fixed jog in the elongate body proximal to the distal end of the catheter positions the distal end of the catheter at an angle relative to the region of the catheter proximal to the fixed jog and is aligned with the one or more markers on the elongate body.Type: ApplicationFiled: January 18, 2024Publication date: May 9, 2024Inventors: John B. SIMPSON, Himanshu N. PATEL, Michael ZUNG, Charles W. MCNALL, Priyanshu GUPTA, Maegan K. SPENCER, Christopher B. WHITE, Dennis W. JACKSON, John F. BLACK
-
Publication number: 20240057942Abstract: Described herein are catheters for use with Optical Coherence Tomography (OCT) that include an optical fiber core having a first refractive index and an interface medium having a second refractive index, where the first and second refractive indexes are mismatched such that receiving electronics configured to receive optical radiation reflected from the reference interface and the target operate in a total noise range that is within 5 dB of the shot noise limit. These OCT catheters may include a silicon die mirror having a reflective coating that is embedded in the interface medium. The optical fiber can be fixed at just the distal end of the catheter, and may be managed within a handle that is attached to the proximal end of the catheter body, and is configured to allow rotation of the both catheter body and the optical fiber relative to the handle.Type: ApplicationFiled: November 1, 2023Publication date: February 22, 2024Inventors: John F. BLACK, Maegan K. SPENCER, Michael ZUNG, Charles W. MCNALL, Evangeline LUMABAS, Michael H. ROSENTHAL, John B. SIMPSON
-
Patent number: 11903677Abstract: A catheter device for crossing occlusions includes an elongate body, a central lumen extending within the elongate body from the proximal end to the distal end, a rotatable tip at the distal end of the elongate body, and an OCT imaging sensor. The rotatable tip is configured to rotate relative to the elongate body. The OCT imaging sensor includes an optical fiber coupled with the rotatable tip and configured to rotate therewith. A distal end of the elongate body includes one or more markers configured to occlude the OCT imaging sensor as it rotates. A fixed jog in the elongate body proximal to the distal end of the catheter positions the distal end of the catheter at an angle relative to the region of the catheter proximal to the fixed jog and is aligned with the one or more markers on the elongate body.Type: GrantFiled: October 4, 2021Date of Patent: February 20, 2024Assignee: Avinger, Inc.Inventors: John B. Simpson, Himanshu N. Patel, Michael Zung, Charles W. McNall, Priyanshu Gupta, Maegan K. Spencer, Christopher B. White, Dennis W. Jackson, John F. Black
-
Patent number: 11839493Abstract: Described herein are catheters for use with Optical Coherence Tomography (OCT) that include an optical fiber core having a first refractive index and an interface medium having a second refractive index, where the first and second refractive indexes are mismatched such that receiving electronics configured to receive optical radiation reflected from the reference interface and the target operate in a total noise range that is within 5 dB of the shot noise limit. These OCT catheters may include a silicon die mirror having a reflective coating that is embedded in the interface medium. The optical fiber can be fixed at just the distal end of the catheter, and may be managed within a handle that is attached to the proximal end of the catheter body, and is configured to allow rotation of the both catheter body and the optical fiber relative to the handle.Type: GrantFiled: February 22, 2022Date of Patent: December 12, 2023Assignee: AVINGER, INC.Inventors: John F. Black, Maegan K. Spencer, Michael Zung, Charles W. McNall, Evangeline Lumabas, Michael H. Rosenthal, John B. Simpson
-
Publication number: 20230329746Abstract: Described herein are atherectomy catheters, systems and methods that include a distal tip region that may be moved laterally so that its long axis is parallel with the long axis of the main catheter body axis. Displacing the distal tip region laterally out of the main catheter body axis exposes an annular blade and opens a passageway for cut tissue to enter a storage region within the catheter. The annular blade may be internally coupled to a drive shaft that rotates the blade, and thus the exposed blade edge may have the same crossing profile (OD) as the rest of the distal end region of the catheter. Also described herein are gear-driven atherectomy devices that may use a cable drive shaft to actuate the annular blade. Both push-to-cut and pull-to-cut variations are described, as are methods for cutting tissue and systems including these atherectomy catheters.Type: ApplicationFiled: June 20, 2023Publication date: October 19, 2023Inventors: Michael H. ROSENTHAL, Michael ZUNG, Nicholas J. SPINELLI, Charles W. MCNALL, John B. SIMPSON, John F. BLACK
-
Patent number: 11717314Abstract: Described herein are atherectomy catheters, systems and methods that include a distal tip region that may be moved laterally so that its long axis is parallel with the long axis of the main catheter body axis. Displacing the distal tip region laterally out of the main catheter body axis exposes an annular blade and opens a passageway for cut tissue to enter a storage region within the catheter. The annular blade may be internally coupled to a drive shaft that rotates the blade, and thus the exposed blade edge may have the same crossing profile (OD) as the rest of the distal end region of the catheter. Also described herein are gear-driven atherectomy devices that may use a cable drive shaft to actuate the annular blade. Both push-to-cut and pull-to-cut variations are described, as are methods for cutting tissue and systems including these atherectomy catheters.Type: GrantFiled: August 20, 2018Date of Patent: August 8, 2023Assignee: AVINGER, INC.Inventors: Michael H. Rosenthal, Michael Zung, Nicholas J. Spinelli, Charles W. McNall, John B. Simpson, John F. Black
-
Patent number: 11698236Abstract: An example grip safety interlock can include a lower receiver with a trigger assembly, a safety selector having a detent channel, a grip having an internal recess, an extended detent pin having a detent point and an interference abutment surface, a grip safety lever having an interference ledge, and a lever bias spring positioned within the grip, extending between the grip and the grip safety lever. The grip safety lever can be positioned to pivot within the internal recess of the grip, and the extended detent pin can extend within the grip such that the detent point contacts the detent channel of the safety selector. The lever bias spring can push the grip safety lever to a first pivot position such that the interference ledge of the grip safety lever abuts the interference abutment surface of the extended detent pin to prevent movement and rotation of the safety selector.Type: GrantFiled: December 29, 2021Date of Patent: July 11, 2023Assignee: Safe Operator Solutions, LLCInventors: Michael Zung, John Mark Cobb
-
Publication number: 20220323099Abstract: An atherectomy catheter for use in a vessel includes a catheter and a rotatable cutter. The rotatable cutter can be translatable within the catheter to extend the cutter through a window of the catheter or retracted the cutter within the catheter. The catheter can have fixed bend and/or have a shapeable portion configured to facilitate positioning and movement of the cutter. In some cases, the cutter is configured to tilt and/or move radially with respect to the catheter upon translation.Type: ApplicationFiled: October 16, 2020Publication date: October 13, 2022Applicant: AVINGER, INC.Inventors: Himanshu N. PATEL, Michael ZUNG
-
Publication number: 20220273337Abstract: Described herein are atherectomy catheters, systems and methods that include longitudinally displaceable drive shafts that drive actuation of one or more cutters at the distal end of the catheter. The catheters described herein may include one or more imaging sensors for imaging before, during or after cutting tissue. In some variations the imaging sensor may be rotated around the perimeter of the catheter independently of the rotation of the cutter. Also describe herein are imaging catheters that may be used without cutters.Type: ApplicationFiled: May 20, 2022Publication date: September 1, 2022Inventors: Himanshu N. PATEL, John B. SIMPSON, Charles W. McNALL, Maegan K. SPENCER, Michael ZUNG, Priyanshu GUPTA, Nicholas J. SPINELLI, Myra L. FABRO, Eduardo SUCGANG, Theodore W. KETAI
-
Patent number: 11406412Abstract: An atherectomy catheter includes an elongate flexible catheter body, an elongate deflectable distal tip coupled to the catheter body at a hinge point, a rotatable cutter near the distal end of the catheter body, and a drive shaft extending within the catheter body and configured to rotate the cutter. The atherectomy catheter further includes an optical fiber extending through the drive shaft substantially on-axis with the catheter body and attached to the cutter. The optical fiber is configured to rotate with the drive shaft. The atherectomy catheter further includes a wedge configured to deflect the distal tip away from the catheter body at the hinge point upon axial movement of the drive shaft.Type: GrantFiled: March 15, 2013Date of Patent: August 9, 2022Assignee: Avinger, Inc.Inventors: Priyanshu Gupta, Michael Zung, Charles W. McNall, Himanshu N. Patel, Christina Van
-
Publication number: 20220240860Abstract: Described herein are catheters for use with Optical Coherence Tomography (OCT) that include an optical fiber core having a first refractive index and an interface medium having a second refractive index, where the first and second refractive indexes are mismatched such that receiving electronics configured to receive optical radiation reflected from the reference interface and the target operate in a total noise range that is within 5 dB of the shot noise limit. These OCT catheters may include a silicon die mirror having a reflective coating that is embedded in the interface medium. The optical fiber can be fixed at just the distal end of the catheter, and may be managed within a handle that is attached to the proximal end of the catheter body, and is configured to allow rotation of the both catheter body and the optical fiber relative to the handle.Type: ApplicationFiled: February 22, 2022Publication date: August 4, 2022Inventors: John F. BLACK, Maegan K. SPENCER, Michael ZUNG, Charles W. MCNALL, Evangeline LUMABAS, Michael H. ROSENTHAL, John B. SIMPSON
-
Patent number: 11382653Abstract: Described herein are atherectomy catheters, systems and methods that include longitudinally displaceable drive shafts that drive actuation of one or more cutters at the distal end of the catheter. The catheters described herein may include one or more imaging sensors for imaging before, during or after cutting tissue. In some variations the imaging sensor may be rotated around the perimeter of the catheter independently of the rotation of the cutter. Also describe herein are imaging catheters that may be used without cutters.Type: GrantFiled: July 2, 2019Date of Patent: July 12, 2022Assignee: Avinger, Inc.Inventors: Himanshu N. Patel, John B. Simpson, Charles W. McNall, Maegan K. Spencer, Michael Zung, Priyanshu Gupta, Nicholas J. Spinelli, Myra L. Fabro, Eduardo Sucgang, Theodore W. Ketai
-
Publication number: 20220183545Abstract: A drive assembly for driving an imaging catheter has a rotatable fiber and a rotatable drive shaft. The drive assembly includes a fiber optic rotating junction and a motor configured to rotate the rotatable portion of the fiber optic rotating junction. In some embodiments, the drive assembly includes a sensor configured to detect a rotational position of the fiber optic rotating junction and a processor configured to obtain the detected rotational position and stop the motor only when the fiber optic rotating junction is in a predetermined rotational position. In some embodiments, the motor includes a hollow shaft through which at least a portion of the fiber optic rotating junction extends.Type: ApplicationFiled: December 22, 2021Publication date: June 16, 2022Inventors: Brian Y. TACHIBANA, Charles W. McNALL, Michael ZUNG, Peter Howard SMITH, Brian CHIU, Douglas Joseph Scott BOURNE, Priyanshu GUPTA
-
Publication number: 20220168011Abstract: An atherectomy catheter includes an elongate flexible catheter body, a cutter near the distal end of the catheter body, a drive shaft connected to the cutter and extending within the catheter body, an imaging element near the distal end of the catheter body.Type: ApplicationFiled: February 17, 2022Publication date: June 2, 2022Inventors: Himanshu N. PATEL, John B. SIMPSON, Anthony J. FERNANDEZ, Richard R. NEWHAUSER, Priyanshu GUPTA, Michael ZUNG, Wendy Ngo LAM, Maegan K. SPENCER, Peter Howard SMITH, Stephen C. DAVIES, Nicholas J. SPINELLI, Charles W. MCNALL, Theodore W. KETAI, Manish KANKARIA, Mark W. ASKEW, Kent C.B. STALKER
-
Publication number: 20220120525Abstract: An example grip safety interlock can include a lower receiver with a trigger assembly, a safety selector having a detent channel, a grip having an internal recess, an extended detent pin having a detent point and an interference abutment surface, a grip safety lever having an interference ledge, and a lever bias spring positioned within the grip, extending between the grip and the grip safety lever. The grip safety lever can be positioned to pivot within the internal recess of the grip, and the extended detent pin can extend within the grip such that the detent point contacts the detent channel of the safety selector. The lever bias spring can push the grip safety lever to a first pivot position such that the interference ledge of the grip safety lever abuts the interference abutment surface of the extended detent pin to prevent movement and rotation of the safety selector.Type: ApplicationFiled: December 29, 2021Publication date: April 21, 2022Applicant: Safe Operator Solutions LLCInventors: Michael Zung, John Mark Cobb
-
Publication number: 20220095926Abstract: A catheter device for crossing occlusions includes an elongate body, a central lumen extending within the elongate body from the proximal end to the distal end, a rotatable tip at the distal end of the elongate body, and an OCT imaging sensor. The rotatable tip is configured to rotate relative to the elongate body. The OCT imaging sensor includes an optical fiber coupled with the rotatable tip and configured to rotate therewith. A distal end of the elongate body includes one or more markers configured to occlude the OCT imaging sensor as it rotates. A fixed jog in the elongate body proximal to the distal end of the catheter positions the distal end of the catheter at an angle relative to the region of the catheter proximal to the fixed jog and is aligned with the one or more markers on the elongate body.Type: ApplicationFiled: October 4, 2021Publication date: March 31, 2022Inventors: John B. SIMPSON, Himanshu N. PATEL, Michael ZUNG, Charles W. MCNALL, Priyanshu GUPTA, Maegan K. SPENCER, Christopher B. WHITE, Dennis W. JACKSON, John F. BLACK
-
Patent number: 11284839Abstract: Described herein are catheters for use with Optical Coherence Tomography (OCT) that include an optical fiber core having a first refractive index and an interface medium having a second refractive index, where the first and second refractive indexes are mismatched such that receiving electronics configured to receive optical radiation reflected from the reference interface and the target operate in a total noise range that is within 5 dB of the shot noise limit. These OCT catheters may include a silicon die mirror having a reflective coating that is embedded in the interface medium. The optical fiber can be fixed at just the distal end of the catheter, and may be managed within a handle that is attached to the proximal end of the catheter body, and is configured to allow rotation of the both catheter body and the optical fiber relative to the handle.Type: GrantFiled: July 9, 2019Date of Patent: March 29, 2022Assignee: Avinger, Inc.Inventors: John F. Black, Maegan K. Spencer, Michael Zung, Charles W. McNall, Evangeline Lumabas, Michael H. Rosenthal, John B. Simpson
-
Patent number: 11284916Abstract: An atherectomy catheter includes an elongate flexible catheter body, a cutter near the distal end of the catheter body, a drive shaft connected to the cutter and extending within the catheter body, an imaging element near the distal end of the catheter body.Type: GrantFiled: November 12, 2019Date of Patent: March 29, 2022Assignee: Avinger, Inc.Inventors: Himanshu N. Patel, John B. Simpson, Anthony J. Fernandez, Richard R. Newhauser, Priyanshu Gupta, Michael Zung, Wendy Ngo Lam, Maegan K. Spencer, Peter Howard Smith, Stephen C. Davies, Nicholas J. Spinelli, Charles W. McNall, Theodore W. Ketai, Manish Kankaria, Mark W. Askew, Kent C. B. Stalker