Patents by Inventor Michal Kowalski
Michal Kowalski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10773234Abstract: A range of carbon materials can be produced using lignin in combination with synthetic phenolic resins or naturally occurring lingo-cellulosic materials. The lignin, which is essentially a naturally occurring phenolic resin, has a carbon yield on pyrolysis similar to that of the synthetic resins, which aids processing. The lignin can be used as a binder phase for synthetic resin or lignocellulosic materials allowing the production of monolithic carbons from a wide range of precursors, as the primary structural material where the thermal processing is modified by the addition of small quantities of synthetic resin materials or as structure modified in the production of meso/macro porous carbons in either bead, granular or monolithic form. A carbonised monolith is provided comprising mesoporous and/or macroporous carbon particles dispersed in a matrix of microporous carbon particles with voids between the particles defining paths for fluid to flow into and through the structure.Type: GrantFiled: July 15, 2016Date of Patent: September 15, 2020Assignee: Neoteryx, LLCInventors: Stephen Robert Tennison, Michal Kowalski, Thomas Avery, Susan Rachel Sandeman, Carol Angela Howell, Yishan Zheng, Ganesh Ingavle, Sergey Victorovich Mikhalovsky, Mambet Nuraliyev
-
Publication number: 20200203614Abstract: The invention relates to novel organic semiconducting polymers, to methods for their preparation and educts or intermediates used therein, to compositions containing them, to the use of the polymers and compositions as organic semiconductors in, or for the preparation of, organic electronic (OE) devices, especially organic photovoltaic (OPV) devices, perovskite-based solar cell (PSC) devices, organic photodetectors (OPD), organic field effect transistors (OFET) and organic light emitting diodes (OLED), and to OE, OPV, PSC, OPD, OFET and OLED devices comprising these polymers or compositions.Type: ApplicationFiled: August 10, 2018Publication date: June 25, 2020Applicant: MERCK PATENT GMBHInventors: Sebastian KOWALSKI, Nicolas BLOUIN, Agnieszka PRON, Michal KROMPIEC
-
Publication number: 20190022623Abstract: A range of carbon materials can be produced using lignin in combination with synthetic phenolic resins or naturally occurring lingo-cellulosic materials. The lignin, which is essentially a naturally occurring phenolic resin, has a carbon yield on pyrolysis similar to that of the synthetic resins, which aids processing. The lignin can be used as a binder phase for synthetic resin or lignocellulosic materials allowing the production of monolithic carbons from a wide range of precursors, as the primary structural material where the thermal processing is modified by the addition of small quantities of synthetic resin materials or as structure modified in the production of meso/macro porous carbons in either bead, granular or monolithic form. A carbonised monolith is provided comprising mesoporous and/or macroporous carbon particles dispersed in a matrix of microporous carbon particles with voids between the particles defining paths for fluid to flow into and through the structure.Type: ApplicationFiled: July 15, 2016Publication date: January 24, 2019Inventors: Stephen Robert Tennison, Michal Kowalski, Susan Rachel Sandeman, Carol Angela Howell, Yishan Zheng, Ganesh Ingavle, Sergey Victorovich Mikhalovsk, Mambet Nuraliyev
-
Patent number: 8532949Abstract: Various computer-implemented methods for classifying defects on a specimen are provided. One method includes assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The method also includes displaying information about the defect groups to a user. In addition, the method includes allowing the user to assign a classification to each of the defect groups. Systems configured to classify defects on a specimen are also provided. One system includes program instructions executable on a processor for assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The system also includes a user interface configured for displaying information about the defect groups to a user and allowing the user to assign a classification to each of the defect groups.Type: GrantFiled: October 12, 2005Date of Patent: September 10, 2013Assignee: KLA-Tencor Technologies Corp.Inventors: Cho Huak Teh, Tommaso Torelli, Dominic David, Chiuman Yeung, Michael Gordon Scott, Lalita A. Balasubramanian, Lisheng Gao, Tong Huang, Jianxin Zhang, Michal Kowalski, Jonathan Oakley
-
Patent number: 8111900Abstract: Various computer-implemented methods are provided. One method for sorting defects in a design pattern of a reticle includes searching for defects of interest in inspection data using priority information associated with individual defects in combination with one or more characteristics of a region proximate the individual defects. The priority information corresponds to modulation levels associated with the individual defects. The inspection data is generated by comparing images of the reticle generated for different values of a lithographic variable. The images include at least one reference image and at least one modulated image. A composite reference image can be generated from two or more reference images. The method also includes assigning one or more identifiers to the defects of interest. The identifier(s) may include, for example, a defect classification and/or an indicator identifying if the defects of interest are to be used for further processing.Type: GrantFiled: May 15, 2010Date of Patent: February 7, 2012Assignee: KLA-Tencor Technologies Corp.Inventors: Kenong Wu, David Randall, Kourosh Nafisi, Ramon Ynzunza, Ingrid B. Peterson, Ariel Tribble, Michal Kowalski, Lisheng Gao, Ashok Kulkarni
-
Patent number: 8000922Abstract: Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.Type: GrantFiled: May 29, 2008Date of Patent: August 16, 2011Assignee: KLA-Tencor Corp.Inventors: Hong Chen, Michael J. Van Riet, Chien-Huei (Adam) Chen, Jason Z. Lin, Chris Maher, Michal Kowalski, Barry Becker, Stephanie Chen, Subramanian Balakrishnan, Suryanarayana Tummala
-
Publication number: 20100226562Abstract: Various computer-implemented methods are provided. One method for sorting defects in a design pattern of a reticle includes searching for defects of interest in inspection data using priority information associated with individual defects in combination with one or more characteristics of a region proximate the individual defects. The priority information corresponds to modulation levels associated with the individual defects. The inspection data is generated by comparing images of the reticle generated for different values of a lithographic variable. The images include at least one reference image and at least one modulated image. A composite reference image can be generated from two or more reference images. The method also includes assigning one or more identifiers to the defects of interest. The identifier(s) may include, for example, a defect classification and/or an indicator identifying if the defects of interest are to be used for further processing.Type: ApplicationFiled: May 15, 2010Publication date: September 9, 2010Applicant: KLA-TENCOR TECHNOLOGIES CORPORATIONInventors: Kenong Wu, David Randall, Kourosh Nafisi, Ramon Ynzunza, Ingrid B. Peterson, Ariel Tribble, Michal Kowalski, Lisheng Gao, Ashok Kulkami
-
Patent number: 7729529Abstract: Various computer-implemented methods are provided. One method for sorting defects in a design pattern of a reticle includes searching for defects of interest in inspection data using priority information associated with individual defects in combination with one or more characteristics of a region proximate the individual defects. The priority information corresponds to modulation levels associated with the individual defects. The inspection data is generated by comparing images of the reticle generated for different values of a lithographic variable. The images include at least one reference image and at least one modulated image. A composite reference image can be generated from two or more reference images. The method also includes assigning one or more identifiers to the defects of interest. The identifier(s) may include, for example, a defect classification and/or an indicator identifying if the defects of interest are to be used for further processing.Type: GrantFiled: December 7, 2004Date of Patent: June 1, 2010Assignee: KLA-Tencor Technologies Corp.Inventors: Kenong Wu, David Randall, Kourosh Nafisi, Ramon Ynzunza, Ingrid B. Peterson, Ariel Tribble, Michal Kowalski, Lisheng Gao, Ashok Kulkarni
-
Publication number: 20090299681Abstract: Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.Type: ApplicationFiled: May 29, 2008Publication date: December 3, 2009Inventors: Hong Chen, Michael J. Van Riet, Chien-Huei (Adam) Chen, Jason Z. Lin, Chris Maher, Michal Kowalski, Barry Becker, Stephanie Chen, Subramanian Balakrishnan, Suryanarayana Tummala
-
Publication number: 20060291714Abstract: Various computer-implemented methods are provided. One method for sorting defects in a design pattern of a reticle includes searching for defects of interest in inspection data using priority information associated with individual defects in combination with one or more characteristics of a region proximate the individual defects. The priority information corresponds to modulation levels associated with the individual defects. The inspection data is generated by comparing images of the reticle generated for different values of a lithographic variable. The images include at least one reference image and at least one modulated image. A composite reference image can be generated from two or more reference images. The method also includes assigning one or more identifiers to the defects of interest. The identifier(s) may include, for example, a defect classification and/or an indicator identifying if the defects of interest are to be used for further processing.Type: ApplicationFiled: December 7, 2004Publication date: December 28, 2006Inventors: Kenong Wu, David Randall, Kourosh Nafisi, Ramon Ynzunza, Ingrid Peterson, Ariel Tribble, Michal Kowalski, Lisheng Gao, Ashok Kulkarni
-
Patent number: 7142992Abstract: Hybrid methods for classifying defects in semiconductor manufacturing are provided. The methods include applying a flexible sequence of rules for defects to inspection data. The sequence of rules includes deterministic rules, statistical rules, hybrid rules, or some combination thereof. The rules included in the sequence may be selected by a user using a graphical interface. The method also includes classifying the defects based on results of applying the sequence of rules to the inspection data.Type: GrantFiled: September 30, 2004Date of Patent: November 28, 2006Assignee: KLA-Tencor Technologies Corp.Inventors: Patrick Huet, Maruti Shanbhag, Sandeep Bhagwat, Michal Kowalski, Vivekanand Kini, David Randall, Sharon McCauley, Tong Huang, Jianxin Zhang, Kenong Wu, Lisheng Gao, Ariel Tribble, Ashok Kulkarni, Cecelia Anne Campochiaro
-
Publication number: 20060265145Abstract: Hybrid methods for classifying defects in semiconductor manufacturing are provided. The methods include applying a flexible sequence of rules for defects to inspection data. The sequence of rules includes deterministic rules, statistical rules, hybrid rules, or some combination thereof. The rules included in the sequence may be selected by a user using a graphical interface The method also includes classifying the defects based on results of applying the sequence of rules to the inspection data.Type: ApplicationFiled: September 30, 2004Publication date: November 23, 2006Inventors: Patrick Huet, Maruti Shanbhag, Sandeep Bhagwat, Michal Kowalski, Vivekanand Kini, David Randall, Sharon McCauley, Tong Huang, Jianxin Zhang, Kenong Wu, Lisheng Gao, Ariel Tribble, Ashok Kulkarni, Cecelia Anne Campochiaro
-
Publication number: 20060082763Abstract: Various computer-implemented methods for classifying defects on a specimen are provided. One method includes assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The method also includes displaying information about the defect groups to a user. In addition, the method includes allowing the user to assign a classification to each of the defect groups. Systems configured to classify defects on a specimen are also provided. One system includes program instructions executable on a processor for assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The system also includes a user interface configured for displaying information about the defect groups to a user and allowing the user to assign a classification to each of the defect groups.Type: ApplicationFiled: October 12, 2005Publication date: April 20, 2006Inventors: Cho Teh, Tommaso Torelli, Dominic David, Chiuman Yeung, Michael Scott, Lalita Balasubramanian, Lisheng Gao, Tong Huang, Jianxin Zhang, Michal Kowalski, Jonathan Oakley