Patents by Inventor Michal NAVRATIL

Michal NAVRATIL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11442155
    Abstract: The various embodiments of the present disclosure are directed to devices, system and processes for detecting saturation of a received signal in a PAS system. A process may include detecting, in a received signal and during a measurement interval, one or more correlated signal levels. Based on one or more results of the detecting, the process may include identifying in a correlated output signal portions of the received signal which exceed a given magnitude threshold during the measurement interval and providing the correlated output signal to an electronic control unit (ECU). A magnitude detector outputs the correlated output signal. A saturation detector determines whether the received signal is saturated during a portion of a measurement interval. When the received signal is saturated, a saturation signal is generated and provided on a delayed basis to the ECU such that it is provided substantially contemporaneously with the correlated output signal.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: September 13, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek Hustava, Michal Navratil, Pavel Kostelnik
  • Patent number: 11163049
    Abstract: Sensors, sensor controllers, and sensor control methods may employ an echo-magnification technique to improve threshold-based echo detection. In one illustrative embodiment, a sensor controller includes: a transmitter, a receiver, and a processing circuit coupled to the transmitter and to the receiver. The transmitter drives a piezoelectric element to generate acoustic bursts. The receiver senses a response of the piezoelectric element to echoes of each acoustic burst. The processing circuit is operable to apply echo-detection processing to the response by: identifying an interval of the response representing at least a portion of a potential echo; deriving a modified response from the response by selectively magnifying the response during said interval; and using the modified response to detect an echo.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 2, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek Hustava, Michal Navratil, Pavel Kostelnik
  • Publication number: 20210103042
    Abstract: The various embodiments of the present disclosure are directed to devices, system and processes for detecting saturation of a received signal in a PAS system. A process may include detecting, in a received signal and during a measurement interval, one or more correlated signal levels. Based on one or more results of the detecting, the process may include identifying in a correlated output signal portions of the received signal which exceed a given magnitude threshold during the measurement interval and providing the correlated output signal to an electronic control unit (ECU). A magnitude detector outputs the correlated output signal. A saturation detector determines whether the received signal is saturated during a portion of a measurement interval. When the received signal is saturated, a saturation signal is generated and provided on a delayed basis to the ECU such that it is provided substantially contemporaneously with the correlated output signal.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 8, 2021
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Michal NAVRATIL, Pavel Kostelnik
  • Publication number: 20200413188
    Abstract: An obstacle monitoring system includes a transducer that receives an ultrasonic echo from an obstacle and generates a signal based on the echo. The system further includes a controller coupled to the transducer that is calibrated based on a frequency response of the transducer and a coupling circuit. The system further includes circuitry generating a damping current, controlled by the controller, that reduces or eliminates reverberation of the transducer.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Tomas SUCHY, Michal NAVRATIL, Jiri KUTEJ
  • Publication number: 20200326415
    Abstract: Sensors, sensor controllers, and sensor control methods may employ an echo- magnification technique to improve threshold-based echo detection. In one illustrative embodiment, a sensor controller includes: a transmitter, a receiver, and a processing circuit coupled to the transmitter and to the receiver. The transmitter drives a piezoelectric element to generate acoustic bursts. The receiver senses a response of the piezoelectric element to echoes of each acoustic burst. The processing circuit is operable to apply echo-detection processing to the response by: identifying an interval of the response representing at least a portion of a potential echo; deriving a modified response from the response by selectively magnifying the response during said interval; and using the modified response to detect an echo.
    Type: Application
    Filed: August 2, 2019
    Publication date: October 15, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Michal NAVRATIL, Pavel KOSTELNIK
  • Publication number: 20180160226
    Abstract: An obstacle monitoring system includes a transducer that receives an ultrasonic echo from an obstacle and generates a signal based on the echo. The system further includes a controller coupled to the transducer that is calibrated based on a frequency response of the transducer and a coupling circuit. The system further includes circuitry generating a damping current, controlled by the controller, that reduces or eliminates reverberation of the transducer.
    Type: Application
    Filed: October 16, 2017
    Publication date: June 7, 2018
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Tomas SUCHY, Michal NAVRATIL, Jiri KUTEJ