Patents by Inventor Michal Okoniewski

Michal Okoniewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598945
    Abstract: A system for in-situ heating of a subsurface formation for the extraction of hydrocarbons in underground deposits is disclosed. The system is configured to heat the underground deposit of hydrocarbons to facilitate fluid flow and hydrocarbon recovery from the underground deposit. The system has an antenna formed from a coaxial transmission line having an annular space between the transmission line outer conductor and the inner conductor and having one or more periodic aperture arrangements along the axial length of the outer conductor. A method for in-situ heating of a subsurface formation for recovering hydrocarbons contained therein is also disclosed. The method comprises: providing an antenna in the subsurface formation; providing electromagnetic RF power to the antenna for heating at least a portion of the subsurface formation.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: March 21, 2017
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Michal Okoniewski, Damir Pasalic, Pedro Vaca, Gunther Hans Dieckmann, Donald Leroy Kuehne, Miguel Vigil, Stein J. Storslett
  • Publication number: 20150322759
    Abstract: A system for in-situ heating of a subsurface formation for the extraction of hydrocarbons in underground deposits is disclosed. The system is configured to heat the underground deposit of hydrocarbons to facilitate fluid flow and hydrocarbon recovery from the underground deposit. The system has an antenna formed from a coaxial transmission line having an annular space between the transmission line outer conductor and the inner conductor and having one or more periodic aperture arrangements along the axial length of the outer conductor. A method for in-situ heating of a subsurface formation for recovering hydrocarbons contained therein is also disclosed. The method comprises: providing an antenna in the subsurface formation; providing electromagnetic RF power to the antenna for heating at least a portion of the subsurface formation.
    Type: Application
    Filed: June 22, 2015
    Publication date: November 12, 2015
    Inventors: Michal Okoniewski, Damir Pasalic, Pedro Vaca, Gunther Hans Dieckmann, Donald Leroy Kuehne, Miguel Vigil, Stein J. Storslett
  • Patent number: 8504135
    Abstract: Embodiments of endfire aperture-based traveling-wave antennas are described. For example, an embodiment, including a Vivaldi antenna, may have a director incorporated into the aperture region of the antenna to provide enhanced radiation directivity. The director may be a shaped dielectric that interacts with an electromagnetic field to reduce the divergence of the resultant beam as it exits the antenna. Additional dielectric substrate layers may be stacked on both sides of the antenna in order to balance the dielectric loading between the different conductors. The dielectric substrates may also eliminate contact between the antenna metallization and the lossy environment. Certain disclosed Vivaldi antennas may be used in tissue screening applications.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 6, 2013
    Assignee: UTI Limited Partnership
    Inventors: Jeremie Bourqui, Elise C. Fear, Michal Okoniewski
  • Publication number: 20100145190
    Abstract: Embodiments of endfire aperture-based traveling-wave antennas are described. For example, an embodiment, including a Vivaldi antenna, may have a director incorporated into the aperture region of the antenna to provide enhanced radiation directivity. The director may be a shaped dielectric that interacts with an electromagnetic field to reduce the divergence of the resultant beam as it exits the antenna. Additional dielectric substrate layers may be stacked on both sides of the antenna in order to balance the dielectric loading between the different conductors. The dielectric substrates may also eliminate contact between the antenna metallization and the lossy environment. Certain disclosed Vivaldi antennas may be used in tissue screening applications.
    Type: Application
    Filed: October 27, 2009
    Publication date: June 10, 2010
    Applicant: UTI LIMITED PARTNERSHIP
    Inventors: Jeremie Bourqui, Elise C. Fear, Michal Okoniewski
  • Publication number: 20100007568
    Abstract: A balun, generally including a substrate, a microstrip conductor, and a parallel strip conductor is described, where a characteristic impedance of the balun is substantially constant at each cross-sectional point along a length of the balun. A transverse electromagnetic horn antenna can transmit and receive ultra-wide band pulses, and includes a first metal conductor and a second metal conductor, where a characteristic impedance of the first and second conductor varies over a length of the antenna in a controlled means.
    Type: Application
    Filed: March 24, 2009
    Publication date: January 14, 2010
    Applicant: UTI LIMITED PARTNERSHIP
    Inventors: Elise Fear, Michal Okoniewski, Mark Andre Campbell
  • Patent number: 7454242
    Abstract: A tissue-sensing adaptive radar method of detecting tumours in breast tissue uses microwave backscattering to detect tumours which have different electrical properties than healthy breast tissue. The method includes steps for reducing skin reflections and for constructing a three-dimensional image using synthetic focusing which shows the presence or absence of microwave reflecting tissues.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: November 18, 2008
    Inventors: Elise Fear, Michal Okoniewski, Maria Stuchly
  • Publication number: 20050107693
    Abstract: A tissue-sensing adaptive radar method of detecting tumours in breast tissue uses microwave backscattering to detect tumours which have different electrical properties than healthy breast tissue. The method includes steps for reducing skin reflections and for constructing a three-dimensional image using synthetic focusing which shows the presence or absence of microwave reflecting tissues.
    Type: Application
    Filed: September 17, 2004
    Publication date: May 19, 2005
    Inventors: Elise Fear, Michal Okoniewski, Maria Stuchly
  • Patent number: 6873750
    Abstract: An electro-optic modulator structure for particular use in narrowband optical subcarrier systems. A traveling wave is established across the active region of the device, instead of a standing wave. This is accomplished through the use of a directional resonator structure that prevents reverse-traveling waves from being established within the resonator. Hence, the electric field is applied to the traveling optical wave in a similar fashion to a traveling-wave modulator, except that the traveling wave has a much greater amplitude due to the build-up of energy inside the resonator. Since the modulator is operated in a traveling-wave fashion, it can be tuned to operate at any frequency using tuning elements, regardless of the length of the active region. Furthermore, the microwave and optical signals can be velocity-matched to mitigate optical transit time effects that are normally associated with a resonant modulator utilizing a standing-wave electrode structure.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: March 29, 2005
    Assignee: Telecommunications Research Laboratories
    Inventors: Sean V. Hum, Robert J. Davies, Michal Okoniewski
  • Publication number: 20040225483
    Abstract: A finite-difference time domain (FDTD) accelerator includes a hardware circuit such as an FPGA having a plurality of one-dimensional bit-serial FDTD cells, a memory and a memory manager.
    Type: Application
    Filed: February 24, 2004
    Publication date: November 11, 2004
    Inventors: Michal OKONIEWSKI, Ryan SCHNEIDER, Laurence TURNER
  • Publication number: 20030215170
    Abstract: An electro-optic modulator structure for particular use in narrowband optical subcarrier systems. A traveling wave is established across the active region of the device, instead of a standing wave. This is accomplished through the use of a directional resonator structure that prevents reverse-traveling waves from being established within the resonator. Hence, the electric field is applied to the traveling optical wave in a similar fashion to a traveling-wave modulator, except that the traveling wave has a much greater amplitude due to the build-up of energy inside the resonator. Since the modulator is operated in a traveling-wave fashion, it can be tuned to operate at any frequency using tuning elements, regardless of the length of the active region. Furthermore, the microwave and optical signals can be velocity-matched to mitigate optical transit time effects that are normally associated with a resonant modulator utilizing a standing-wave electrode structure.
    Type: Application
    Filed: March 12, 2003
    Publication date: November 20, 2003
    Applicant: Telecommunications Research Laboratories
    Inventors: Sean V. Hum, Robert J. Davies, Michal Okoniewski