Patents by Inventor Michal Sofka
Michal Sofka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230117915Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: ApplicationFiled: October 27, 2022Publication date: April 20, 2023Applicant: BFLY OPERATIONS, INC.Inventors: Daniel Nouri, Alex Rothberg, Matthew de Jonge, Jimmy Jia, Jonathan M. Rothberg, Michal Sofka, David Elgena, Mark Michalski, Tomer Gafner, Abraham Neben
-
Patent number: 11564590Abstract: Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques include: obtaining input MR spatial frequency data obtained by imaging the subject using the MRI system; generating an MR image of the subject from the input MR spatial frequency data using a neural network model comprising: a pre-reconstruction neural network configured to process the input MR spatial frequency data; a reconstruction neural network configured to generate at least one initial image of the subject from output of the pre-reconstruction neural network; and a post-reconstruction neural network configured to generate the MR image of the subject from the at least one initial image of the subject.Type: GrantFiled: March 12, 2020Date of Patent: January 31, 2023Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mohseni Salehi, Michal Sofka, Prantik Kundu, Carole Lazarus, Hadrien A. Dyvorne, Rafael O'Halloran, Laura Sacolick
-
Patent number: 11564657Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: GrantFiled: May 25, 2021Date of Patent: January 31, 2023Assignee: BFLY OPERATIONS, INC.Inventors: Matthew de Jonge, Robert Schneider, David Elgena, Alex Rothberg, Jonathan M. Rothberg, Michal Sofka, Tomer Gafner, Karl Thiele, Abraham Neben
-
Patent number: 11540808Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: GrantFiled: June 19, 2017Date of Patent: January 3, 2023Assignee: BFLY Operations, Inc.Inventors: Daniel Nouri, Alex Rothberg, Matthew de Jonge, Jimmy Jia, Jonathan M. Rothberg, Michal Sofka, David Elgena, Mark Michalski, Tomer Gafner, Abraham Neben
-
Patent number: 11467239Abstract: A magnetic resonance imaging (MRI) system, comprising: a magnetics system comprising: a B0 magnet configured to provide a B0 field for the MRI system; gradient coils configured to provide gradient fields for the MRI system; and at least one RF coil configured to detect magnetic resonance (MR) signals; and a controller configured to: control the magnetics system to acquire MR spatial frequency data using non-Cartesian sampling; and generate an MR image from the acquired MR spatial frequency data using a neural network model comprising one or more neural network blocks including a first neural network block, wherein the first neural network block is configured to perform data consistency processing using a non-uniform Fourier transformation.Type: GrantFiled: July 29, 2019Date of Patent: October 11, 2022Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mosheni Salehi, Michal Sofka, Prantik Kundu, Ziyi Wang, Carole Lazarus, Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Jonathan M. Rothberg
-
Publication number: 20220283253Abstract: Techniques are provided for imaging a subject. The method may comprise receiving an indication to image the subject using an magnetic resonance imaging (MRI) system, and in response to receiving the indication, with at least one controller: generating, using at least one RF coil, an initial MR data set for generating an initial image of the subject; determining, using the initial MR image, a difference in orientation between a current orientation of the subject in the initial MR image and a target orientation of the subject; determining, using the determined difference in orientation, an adjustment to a gradient pulse sequence for controlling at least one gradient coil; applying the determined adjustment to the gradient pulse sequence to obtain an adjusted gradient pulse sequence; generating an adjusted MR data set using the adjusted gradient pulse sequence; and generating a second MR image of the subject using the adjusted MR data set.Type: ApplicationFiled: March 4, 2022Publication date: September 8, 2022Applicant: Hyperfine Operations, Inc.Inventors: Laura Sacolick, Rafael O'Halloran, Hadrien A. Dyvorne, Khan Mohammad Siddiqui, Michal Sofka, Prantik Kundu, Tianrui Luo
-
Publication number: 20220214417Abstract: A magnetic resonance imaging (MRI) system, comprising: a magnetics system comprising: a B0 magnet configured to provide a B0 field for the MRI system; gradient coils configured to provide gradient fields for the MRI system; and at least one RF coil configured. to detect magnetic resonance (MR) signals; and a controller configured to: control the magnetics system to acquire MR spatial frequency data using non-Cartesian sampling; and generate an MR image from the acquired MR spatial frequency data using a neural network model comprising one or more neural network blocks including a first neural network block, wherein the first neural network block is configured to perform data consistency processing using a non-uniform Fourier transformation.Type: ApplicationFiled: March 23, 2022Publication date: July 7, 2022Applicant: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mohseni Salehi, Michal Sofka, Prantik Kundu, Ziyi Wang, Carole Lazarus, Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Jonathan M. Rothberg
-
Publication number: 20220167945Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: ApplicationFiled: September 7, 2021Publication date: June 2, 2022Applicant: BFLY Operations, Inc.Inventors: Matthew de Jonge, Robert Schneider, David Elgena, Alex Rothberg, Jonathan M. Rothberg, Michal Sofka, Tomer Gafner, Karl Thiele, Abraham Neben
-
Patent number: 11344219Abstract: Generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system by: generating first and second sets of one or more MR images from first and second input MR data; aligning the first and second sets of MR images using a neural network model comprising first and second neural networks, the aligning comprising: estimating, using the first neural network, a first transformation between the first and second sets of MR images; generating a first updated set of MR images from the second set of MR images using the first transformation; estimating, using the second neural network, a second transformation between the first set and the first updated set of MR images; and aligning the first set of MR images and the second set of MR images at least in part by using the first transformation and the second transformation.Type: GrantFiled: March 12, 2020Date of Patent: May 31, 2022Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mosheni Salehi, Michal Sofka
-
Patent number: 11324418Abstract: Techniques for generating magnetic resonance (MR) images from MR data obtained by a magnetic resonance imaging (MRI) system comprising a plurality of RF coils configured to detect RF signals. The techniques include: obtaining a plurality of input MR datasets obtained by the MRI system to image a subject, each of the plurality of input MR datasets comprising spatial frequency data and obtained using a respective RF coil in the plurality of RF coils; generating a respective plurality of MR images from the plurality of input MR datasets by using an MR image reconstruction technique; estimating, using a neural network model, a plurality of RF coil profiles corresponding to the plurality of RF coils; generating an MR image of the subject using the plurality of MR images and the plurality of RF coil profiles; and outputting the generated MR image.Type: GrantFiled: March 12, 2020Date of Patent: May 10, 2022Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Moshen Salehi, Michal Sofka
-
Patent number: 11311270Abstract: An anatomical structure is detected (110) in a volume of ultrasound data by identifying (150) the anatomical structure in another volume of ultrasound data and generating (155) an image of the anatomical structure and an anatomical landmark. A group of images are generated (130) of the original volume and compared (140) to the image of the other volume. An image of the group of images is selected (150) as including the anatomical structure based on the comparison.Type: GrantFiled: July 2, 2015Date of Patent: April 26, 2022Assignee: Siemens Healthcare GmbHInventors: Jin-hyeong Park, Michal Sofka, Shaohua Kevin Zhou
-
Patent number: 11300645Abstract: A magnetic resonance imaging (MRI) system, comprising: a magnetics system comprising: a B0 magnet configured to provide a B0 field for the MRI system; gradient coils configured to provide gradient fields for the MRI system; and at least one RF coil configured to detect magnetic resonance (MR) signals; and a controller configured to: control the magnetics system to acquire MR spatial frequency data using non-Cartesian sampling; and generate an MR image from the acquired MR spatial frequency data using a neural network model comprising one or more neural network blocks including a first neural network block, wherein the first neural network block is configured to perform data consistency processing using a non-uniform Fourier transformation.Type: GrantFiled: July 29, 2019Date of Patent: April 12, 2022Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Moshen Salehi, Michal Sofka, Prantik Kundu, Ziyi Wang, Carole Lazarus, Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Jonathan M. Rothberg
-
Publication number: 20220107378Abstract: Techniques for denoising a magnetic resonance (MR) image are provided, including: obtaining a noisy MR image; denoising the noisy MR image of the subject using a denoising neural network model, and outputting a denoised MR image. The denoising neural network model is trained by: generating first training data for training a first neural network model to denoise MR images by generating a first plurality of noisy MR images using clean MR data associated with a source domain and first MR noise data associated with the target domain; training the first neural network model using the first training data; generating training data for training the denoising neural network model by applying the first neural network model to a second plurality of noisy MR images and generating a plurality of denoised MR images; and training the denoising neural network model using the training data for training the denoising neural network model.Type: ApplicationFiled: October 7, 2021Publication date: April 7, 2022Inventors: Neel Dey, Jo Schlemper, Seyed Sadegh Moshen Salehi, Michal Sofka, Prantik Kundu
-
Publication number: 20220015662Abstract: Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques including: obtaining input MR data obtained by imaging the subject using the MRI system; generating a plurality of transformed input MR data instances by applying a respective first plurality of transformations to the input MR data; generating a plurality of MR images from the plurality of transformed input MR data instances and the input MR data using a non-linear MR image reconstruction technique; generating an ensembled MR image from the plurality of MR images at least in part by: applying a second plurality of transformations to the plurality of MR images to obtain a plurality of transformed MR images; and combining the plurality of transformed MR images to obtain the ensembled MR image; and outputting the ensembled MR image.Type: ApplicationFiled: September 17, 2021Publication date: January 20, 2022Applicant: Hyperfine, Inc.Inventors: Jo Schlemper, Seyed Sadegh Moshen Salehi, Michal Sofka
-
Patent number: 11185249Abstract: Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques including: obtaining input MR data obtained by imaging the subject using the MRI system; generating a plurality of transformed input MR data instances by applying a respective first plurality of transformations to the input MR data; generating a plurality of MR images from the plurality of transformed input MR data instances and the input MR data using a non-linear MR image reconstruction technique; generating an ensembled MR image from the plurality of MR images at least in part by: applying a second plurality of transformations to the plurality of MR images to obtain a plurality of transformed MR images; and combining the plurality of transformed MR images to obtain the ensembled MR image; and outputting the ensembled MR image.Type: GrantFiled: March 12, 2020Date of Patent: November 30, 2021Assignee: Hyperfine, Inc.Inventors: Jo Schlemper, Seyed Sadegh Moshen Salehi, Michal Sofka
-
Patent number: 11185307Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: GrantFiled: June 2, 2020Date of Patent: November 30, 2021Assignee: BFLY Operations, Inc.Inventors: Matthew de Jonge, Robert Schneider, David Elgena, Alex Rothberg, Jonathan M. Rothberg, Michal Sofka, Tomer Gafner, Karl Thiele, Abraham Neben
-
Publication number: 20210275145Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: ApplicationFiled: May 25, 2021Publication date: September 9, 2021Applicant: Butterfly Network, Inc.Inventors: Matthew de Jonge, Robert Schneider, David Elgena, Alex Rothberg, Jonathan M. Rothberg, Michal Sofka, Tomer Gafner, Karl Thiele, Abraham Neben
-
Patent number: 10993697Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: GrantFiled: June 19, 2017Date of Patent: May 4, 2021Assignee: Butterfly Network, Inc.Inventors: Daniel Nouri, Alex Rothberg, Jonathan M. Rothberg, Matthew de Jonge, Jimmy Jia, Michal Sofka, Abraham Neben
-
Patent number: 10959702Abstract: Aspects of the technology described herein relate to techniques for guiding an operator to use an ultrasound device. Thereby, operators with little or no experience operating ultrasound devices may capture medically relevant ultrasound images and/or interpret the contents of the obtained ultrasound images. For example, some of the techniques disclosed herein may be used to identify a particular anatomical view of a subject to image with an ultrasound device, guide an operator of the ultrasound device to capture an ultrasound image of the subject that contains the particular anatomical view, and/or analyze the captured ultrasound image to identify medical information about the subject.Type: GrantFiled: June 19, 2017Date of Patent: March 30, 2021Assignee: Butterfly Network, Inc.Inventors: Daniel Nouri, Alex Rothberg, Matthew de Jonge, Jimmy Jia, Jonathan M. Rothberg, Michal Sofka, Abraham Neben
-
Patent number: 10955504Abstract: Some aspects include a method of detecting change in biological subject matter of a patient positioned within a low-field magnetic resonance imaging device, the method comprising: while the patient remains positioned within the low-field magnetic resonance device: acquiring first magnetic resonance image data of a portion of the patient; acquiring second magnetic resonance image data of the portion of the patient subsequent to acquiring the first magnetic resonance image data; aligning the first magnetic resonance image data and the second magnetic resonance image data; and comparing the aligned first magnetic resonance image data and second magnetic resonance image data to detect at least one change in the biological subject matter of the portion of the patient.Type: GrantFiled: November 21, 2017Date of Patent: March 23, 2021Assignee: Hyperfine Research, Inc.Inventors: Michal Sofka, Jonathan M. Rothberg, Gregory L. Charvat, Tyler S. Ralston